Skip to main content
Erschienen in: Inflammation 2/2024

06.03.2024 | RESEARCH

Targeting S100A9 Prevents β-Adrenergic Activation–Induced Cardiac Injury

verfasst von: Jie Liu, Xin Chen, Lijun Zeng, Laiping Zhang, Fangjie Wang, Cuiping Peng, Xiaoyong Huang, Shuhui Li, Ying Liu, Weinian Shou, Xiaohui Li, Dayan Cao

Erschienen in: Inflammation | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Altered cardiac innate immunity is highly associated with the progression of cardiac disease states and heart failure. S100A8/A9 is an important component of damage-associated molecular patterns (DAMPs) that is critically involved in the pathogenesis of heart failure, thus considered a promising target for pharmacological intervention. In the current study, initially, we validated the role of S100A8/A9 in contributing to cardiac injury and heart failure via the overactivation of the β-adrenergic pathway and tested the potential use of paquinimod as a pharmacological intervention of S100A8/A9 activation in preventing cardiac dysfunction, collagen deposition, inflammation, and immune cell infiltration in β-adrenergic overactivation–mediated heart failure. This finding was further confirmed by the cardiomyocyte-specific silencing of S100A9 via the use of the adeno-associated virus (AAV) 9-mediated short hairpin RNA (shRNA) gene silencing system. Most importantly, in the assessment of the underlying cellular mechanism by which activated S100A8/A9 cause aggravated progression of cardiac fibrosis and heart failure, we discovered that the activated S100A8/A9 can promote fibroblast-macrophage interaction, independent of inflammation, which is likely a key mechanism leading to the enhanced collagen production. Our results revealed that targeting S100A9 provides dual beneficial effects, which is not only a strategy to counteract cardiac inflammation but also preclude cardiac fibroblast-macrophage interactions. The findings of this study also indicate that targeting S100A9 could be a promising strategy for addressing cardiac fibrosis, potentially leading to future drug development.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Roth, G.A., G.A. Mensah, C.O. Johnson, G. Addolorato, E. Ammirati, L.M. Baddour, et al. 2020. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology 76: 2982–3021.PubMedPubMedCentralCrossRef Roth, G.A., G.A. Mensah, C.O. Johnson, G. Addolorato, E. Ammirati, L.M. Baddour, et al. 2020. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology 76: 2982–3021.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease study. Lancet 395: 200–211.PubMedPubMedCentralCrossRef Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease study. Lancet 395: 200–211.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Townsend, N., D. Kazakiewicz, F. Lucy Wright, A. Timmis, R. Huculeci, A. Torbica, et al. 2022. Epidemiology of cardiovascular disease in Europe Nature Reviews. Cardiology 19: 133–143.PubMed Townsend, N., D. Kazakiewicz, F. Lucy Wright, A. Timmis, R. Huculeci, A. Torbica, et al. 2022. Epidemiology of cardiovascular disease in Europe Nature Reviews. Cardiology 19: 133–143.PubMed
4.
Zurück zum Zitat Tsao, C.W., A.W. Aday, Z.I. Almarzooq, A. Alonso, A.Z. Beaton, M.S. Bittencourt, et al. 2022. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation CIR0000000000001052. Tsao, C.W., A.W. Aday, Z.I. Almarzooq, A. Alonso, A.Z. Beaton, M.S. Bittencourt, et al. 2022. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation CIR0000000000001052.
5.
Zurück zum Zitat Adamo, L., C. Rocha-Resende, S.D. Prabhu, and D.L. Mann. 2020. Reappraising the role of inflammation in heart failure. Nature Reviews Cardiology. Adamo, L., C. Rocha-Resende, S.D. Prabhu, and D.L. Mann. 2020. Reappraising the role of inflammation in heart failure. Nature Reviews Cardiology.
6.
Zurück zum Zitat Levine, B., J. Kalman, L. Mayer, H.M. Fillit, and M. Packer. 1990. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. The New England journal of medicine 323: 236–241.PubMedCrossRef Levine, B., J. Kalman, L. Mayer, H.M. Fillit, and M. Packer. 1990. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. The New England journal of medicine 323: 236–241.PubMedCrossRef
7.
Zurück zum Zitat Zhang, Y., Z. Huang, and H. Li. 2017. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovascular research 113: 1538–1550.PubMedCrossRef Zhang, Y., Z. Huang, and H. Li. 2017. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovascular research 113: 1538–1550.PubMedCrossRef
8.
Zurück zum Zitat Paulus, W.J., and M.R. Zile. 2021. From systemic inflammation to myocardial fibrosis: The heart failure with preserved ejection fraction paradigm revisited. Circulation research 128: 1451–1467.PubMedPubMedCentralCrossRef Paulus, W.J., and M.R. Zile. 2021. From systemic inflammation to myocardial fibrosis: The heart failure with preserved ejection fraction paradigm revisited. Circulation research 128: 1451–1467.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Frantz, S., I. Falcao-Pires, J.L. Balligand, J. Bauersachs, D. Brutsaert, M. Ciccarelli, et al. 2018. The innate immune system in chronic cardiomyopathy: A European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure 20: 445–459.PubMedCrossRef Frantz, S., I. Falcao-Pires, J.L. Balligand, J. Bauersachs, D. Brutsaert, M. Ciccarelli, et al. 2018. The innate immune system in chronic cardiomyopathy: A European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure 20: 445–459.PubMedCrossRef
10.
Zurück zum Zitat Steffens, S., M. Nahrendorf, and R. Madonna, 2021. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. European Heart Journal. Steffens, S., M. Nahrendorf, and R. Madonna, 2021. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. European Heart Journal.
11.
Zurück zum Zitat Ridker, P.M., B.M. Everett, T. Thuren, J.G. MacFadyen, W.H. Chang, C. Ballantyne, et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England journal of medicine 377: 1119–1131.PubMedCrossRef Ridker, P.M., B.M. Everett, T. Thuren, J.G. MacFadyen, W.H. Chang, C. Ballantyne, et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England journal of medicine 377: 1119–1131.PubMedCrossRef
12.
Zurück zum Zitat Everett, B.M., J.H. Cornel, M. Lainscak, S.D. Anker, A. Abbate, T. Thuren, et al. 2019. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139: 1289–1299.PubMedCrossRef Everett, B.M., J.H. Cornel, M. Lainscak, S.D. Anker, A. Abbate, T. Thuren, et al. 2019. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139: 1289–1299.PubMedCrossRef
13.
Zurück zum Zitat Cao, D., Y. Liu, X. Chen, J. Liu, J. Liu, W. Lai, et al. 2022. Activation of iNKT cells at the maternal-fetal interface predisposes offspring to cardiac injury. Circulation 145: 1032–1035.PubMedCrossRef Cao, D., Y. Liu, X. Chen, J. Liu, J. Liu, W. Lai, et al. 2022. Activation of iNKT cells at the maternal-fetal interface predisposes offspring to cardiac injury. Circulation 145: 1032–1035.PubMedCrossRef
14.
Zurück zum Zitat Chen, X., J. Liu, J. Liu, W.J. Wang, W.J. Lai, S.H. Li, et al. 2020. alpha-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice. Acta pharmacologica Sinica 41: 1416–1426.PubMedPubMedCentralCrossRef Chen, X., J. Liu, J. Liu, W.J. Wang, W.J. Lai, S.H. Li, et al. 2020. alpha-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice. Acta pharmacologica Sinica 41: 1416–1426.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Aronoff, L., S. Epelman, and X, Clemente-Casares. 2018. Isolation and identification of extravascular immune cells of the heart. Journal of Visualized Experiments. Aronoff, L., S. Epelman, and X, Clemente-Casares. 2018. Isolation and identification of extravascular immune cells of the heart. Journal of Visualized Experiments.
16.
Zurück zum Zitat Dick, S.A., A. Wong, H. Hamidzada, S. Nejat, R. Nechanitzky, S. Vohra, et al. 2022. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Science Immunology 7: eabf7777. Dick, S.A., A. Wong, H. Hamidzada, S. Nejat, R. Nechanitzky, S. Vohra, et al. 2022. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Science Immunology 7: eabf7777.
17.
Zurück zum Zitat Qu, X., Y. Liu, D. Cao, J. Chen, Z. Liu, H. Ji, et al. 2019. BMP10 preserves cardiac function through its dual activation of SMAD-mediated and STAT3-mediated pathways. The Journal of biological chemistry 294: 19877–19888.PubMedPubMedCentralCrossRef Qu, X., Y. Liu, D. Cao, J. Chen, Z. Liu, H. Ji, et al. 2019. BMP10 preserves cardiac function through its dual activation of SMAD-mediated and STAT3-mediated pathways. The Journal of biological chemistry 294: 19877–19888.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Soliman, H., and F.M.V. Rossi. 2020. Cardiac fibroblast diversity in health and disease. Matrix biology : Journal of the International Society for Matrix Biology 91–92: 75–91.PubMedCrossRef Soliman, H., and F.M.V. Rossi. 2020. Cardiac fibroblast diversity in health and disease. Matrix biology : Journal of the International Society for Matrix Biology 91–92: 75–91.PubMedCrossRef
19.
Zurück zum Zitat Gibb, A.A., M.P. Lazaropoulos, and J.W. Elrod. 2020. Myofibroblasts and fibrosis: Mitochondrial and metabolic control of cellular differentiation. Circulation research 127: 427–447.PubMedPubMedCentralCrossRef Gibb, A.A., M.P. Lazaropoulos, and J.W. Elrod. 2020. Myofibroblasts and fibrosis: Mitochondrial and metabolic control of cellular differentiation. Circulation research 127: 427–447.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Frangogiannis, N.G. 2019. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine 65: 70–99.PubMedCrossRef Frangogiannis, N.G. 2019. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine 65: 70–99.PubMedCrossRef
22.
Zurück zum Zitat Murphy, S.P., R. Kakkar, C.P. McCarthy, and J.L. Januzzi Jr. 2020. Inflammation in heart failure: JACC state-of-the-art review. Journal of the American College of Cardiology 75: 1324–1340.PubMedCrossRef Murphy, S.P., R. Kakkar, C.P. McCarthy, and J.L. Januzzi Jr. 2020. Inflammation in heart failure: JACC state-of-the-art review. Journal of the American College of Cardiology 75: 1324–1340.PubMedCrossRef
23.
Zurück zum Zitat Altwegg, L.A., M. Neidhart, M. Hersberger, S. Muller, F.R. Eberli, R. Corti, et al. 2007. Myeloid-related protein 8/14 complex is released by monocytes and granulocytes at the site of coronary occlusion: A novel, early, and sensitive marker of acute coronary syndromes. European heart journal 28: 941–948.PubMedCrossRef Altwegg, L.A., M. Neidhart, M. Hersberger, S. Muller, F.R. Eberli, R. Corti, et al. 2007. Myeloid-related protein 8/14 complex is released by monocytes and granulocytes at the site of coronary occlusion: A novel, early, and sensitive marker of acute coronary syndromes. European heart journal 28: 941–948.PubMedCrossRef
24.
Zurück zum Zitat Buechler, M.B., W. Fu, and S.J. Turley. 2021. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54: 903–915.PubMedCrossRef Buechler, M.B., W. Fu, and S.J. Turley. 2021. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54: 903–915.PubMedCrossRef
25.
Zurück zum Zitat Zhou, X., R.A. Franklin, M. Adler, J.B. Jacox, W. Bailis, J.A. Shyer, et al. 2018. Circuit design features of a stable two-cell system. Cell 172 (744–757): e17. Zhou, X., R.A. Franklin, M. Adler, J.B. Jacox, W. Bailis, J.A. Shyer, et al. 2018. Circuit design features of a stable two-cell system. Cell 172 (744–757): e17.
26.
Zurück zum Zitat Zhang, Y., J. Bauersachs, and H.F. Langer. 2017. Immune mechanisms in heart failure. European Journal of Heart Failure 19: 1379–1389.PubMedCrossRef Zhang, Y., J. Bauersachs, and H.F. Langer. 2017. Immune mechanisms in heart failure. European Journal of Heart Failure 19: 1379–1389.PubMedCrossRef
27.
Zurück zum Zitat Mann, D.L., V.K. Topkara, S. Evans, and P.M. Barger, 2010. Innate immunity in the adult mammalian heart: for whom the cell tolls. Transactions of the American Clinical and Climatological Association 121: 34–50; discussion 50–1. Mann, D.L., V.K. Topkara, S. Evans, and P.M. Barger, 2010. Innate immunity in the adult mammalian heart: for whom the cell tolls. Transactions of the American Clinical and Climatological Association 121: 34–50; discussion 50–1.
28.
Zurück zum Zitat Jarrah, A.A., and S.T. Tarzami. 2015. The duality of chemokines in heart failure. Expert review of clinical immunology 11: 523–536.PubMedCrossRef Jarrah, A.A., and S.T. Tarzami. 2015. The duality of chemokines in heart failure. Expert review of clinical immunology 11: 523–536.PubMedCrossRef
29.
Zurück zum Zitat Zhang, W., K.J. Lavine, S. Epelman, S.A. Evans, C.J. Weinheimer, P.M. Barger, et al. 2015. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. Journal of the American Heart Association 4: e001993.PubMedPubMedCentralCrossRef Zhang, W., K.J. Lavine, S. Epelman, S.A. Evans, C.J. Weinheimer, P.M. Barger, et al. 2015. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. Journal of the American Heart Association 4: e001993.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Parrillo, J.E., R.E. Cunnion, S.E. Epstein, M.M. Parker, A.F. Suffredini, M. Brenner, et al. 1989. A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. The New England journal of medicine 321: 1061–1068.PubMedCrossRef Parrillo, J.E., R.E. Cunnion, S.E. Epstein, M.M. Parker, A.F. Suffredini, M. Brenner, et al. 1989. A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. The New England journal of medicine 321: 1061–1068.PubMedCrossRef
31.
Zurück zum Zitat Martelli, D., S.T. Yao, M.J. McKinley, and R.M. McAllen. 2014. Reflex control of inflammation by sympathetic nerves, not the vagus. Journal of Physiology 592: 1677–1686.PubMedPubMedCentralCrossRef Martelli, D., S.T. Yao, M.J. McKinley, and R.M. McAllen. 2014. Reflex control of inflammation by sympathetic nerves, not the vagus. Journal of Physiology 592: 1677–1686.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Saito, S., Y. Hiroi, Y. Zou, R. Aikawa, H. Toko, F. Shibasaki, et al. 2000. beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. The Journal of biological chemistry 275: 34528–34533.PubMedCrossRef Saito, S., Y. Hiroi, Y. Zou, R. Aikawa, H. Toko, F. Shibasaki, et al. 2000. beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. The Journal of biological chemistry 275: 34528–34533.PubMedCrossRef
33.
Zurück zum Zitat Murray, D.R., S.D. Prabhu, and B. Chandrasekar. 2000. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 101: 2338–2341.PubMedCrossRef Murray, D.R., S.D. Prabhu, and B. Chandrasekar. 2000. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 101: 2338–2341.PubMedCrossRef
34.
Zurück zum Zitat Mann, D.L. 2002. Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circulation research 91: 988–998.PubMedCrossRef Mann, D.L. 2002. Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circulation research 91: 988–998.PubMedCrossRef
35.
Zurück zum Zitat Xia, G.L., Y.K. Wang, and Z.Q. Huang. 2016. The correlation of serum myeloid-related protein-8/14 and eosinophil cationic protein in patients with coronary artery disease. BioMed Research International 2016: 4980251.PubMedPubMedCentralCrossRef Xia, G.L., Y.K. Wang, and Z.Q. Huang. 2016. The correlation of serum myeloid-related protein-8/14 and eosinophil cationic protein in patients with coronary artery disease. BioMed Research International 2016: 4980251.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Lech, M., J. Guess, J. Duffner, J. Oyamada, C. Shimizu, S. Hoshino, et al. 2019. Circulating markers of inflammation persist in children and adults with giant aneurysms after Kawasaki disease. Circulation: Genomic and Precision Medicine 12: e002433. Lech, M., J. Guess, J. Duffner, J. Oyamada, C. Shimizu, S. Hoshino, et al. 2019. Circulating markers of inflammation persist in children and adults with giant aneurysms after Kawasaki disease. Circulation: Genomic and Precision Medicine 12: e002433.
37.
Zurück zum Zitat Santilli, F., L. Paloscia, R. Liani, M. Di Nicola, M. Di Marco, S. Lattanzio, et al. 2014. Circulating myeloid-related protein-8/14 is related to thromboxane-dependent platelet activation in patients with acute coronary syndrome, with and without ongoing low-dose aspirin treatment. Journal of the American Heart Association 3. Santilli, F., L. Paloscia, R. Liani, M. Di Nicola, M. Di Marco, S. Lattanzio, et al. 2014. Circulating myeloid-related protein-8/14 is related to thromboxane-dependent platelet activation in patients with acute coronary syndrome, with and without ongoing low-dose aspirin treatment. Journal of the American Heart Association 3.
38.
Zurück zum Zitat Berg, D.D., R.W. Yeh, L. Mauri, D.A. Morrow, D.J. Kereiakes, D.E. Cutlip, et al. 2021. Biomarkers of platelet activation and cardiovascular risk in the DAPT trial. Journal of Thrombosis and Thrombolysis 51: 675–681.PubMedCrossRef Berg, D.D., R.W. Yeh, L. Mauri, D.A. Morrow, D.J. Kereiakes, D.E. Cutlip, et al. 2021. Biomarkers of platelet activation and cardiovascular risk in the DAPT trial. Journal of Thrombosis and Thrombolysis 51: 675–681.PubMedCrossRef
39.
Zurück zum Zitat Boyd, J.H., B. Kan, H. Roberts, Y. Wang, and K.R. Walley. 2008. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circulation research 102: 1239–1246.PubMedCrossRef Boyd, J.H., B. Kan, H. Roberts, Y. Wang, and K.R. Walley. 2008. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circulation research 102: 1239–1246.PubMedCrossRef
40.
Zurück zum Zitat Müller, I., T. Vogl, K. Pappritz, K. Miteva, K. Savvatis, D. Rohde, et al. 2017. Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in Coxsackievirus B3-induced myocarditis. Circulation: Heart Failure 10. Müller, I., T. Vogl, K. Pappritz, K. Miteva, K. Savvatis, D. Rohde, et al. 2017. Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in Coxsackievirus B3-induced myocarditis. Circulation: Heart Failure 10.
41.
Zurück zum Zitat Wu, Y., Y. Li, C. Zhang, Y. Wang, W. Cui, et al. 2014. S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-induced cardiac inflammation and injury. Hypertension 63: 1241–50. Wu, Y., Y. Li, C. Zhang, Y. Wang, W. Cui, et al. 2014. S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-induced cardiac inflammation and injury. Hypertension 63: 1241–50.
42.
Zurück zum Zitat Marinkovic, G., H. Grauen Larsen, T. Yndigegn, I.A. Szabo, R.G. Mares, L. de Camp, et al. 2019. Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. European heart journal 40: 2713–2723.PubMedCrossRef Marinkovic, G., H. Grauen Larsen, T. Yndigegn, I.A. Szabo, R.G. Mares, L. de Camp, et al. 2019. Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. European heart journal 40: 2713–2723.PubMedCrossRef
43.
Zurück zum Zitat Sreejit, G., A. Abdel-Latif, B. Athmanathan, R. Annabathula, A. Dhyani, S.K. Noothi, et al. 2020. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141: 1080–1094.PubMedPubMedCentralCrossRef Sreejit, G., A. Abdel-Latif, B. Athmanathan, R. Annabathula, A. Dhyani, S.K. Noothi, et al. 2020. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141: 1080–1094.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Volz, H.C., D. Laohachewin, C. Seidel, F. Lasitschka, K. Keilbach, A.R. Wienbrandt, et al. 2012. S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-kappaB signaling. Basic Research in Cardiology 107: 250.PubMedCrossRef Volz, H.C., D. Laohachewin, C. Seidel, F. Lasitschka, K. Keilbach, A.R. Wienbrandt, et al. 2012. S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-kappaB signaling. Basic Research in Cardiology 107: 250.PubMedCrossRef
45.
Zurück zum Zitat Marinkovic, G., D.S. Koenis, L. de Camp, R. Jablonowski, N. Graber, V. de Waard, et al. 2020. S100A9 links inflammation and repair in myocardial infarction. Circulation research 127: 664–676.PubMedCrossRef Marinkovic, G., D.S. Koenis, L. de Camp, R. Jablonowski, N. Graber, V. de Waard, et al. 2020. S100A9 links inflammation and repair in myocardial infarction. Circulation research 127: 664–676.PubMedCrossRef
46.
Zurück zum Zitat Li, Y., B. Chen, X. Yang, C. Zhang, Y. Jiao, P. Li, et al. 2019. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation 140: 751–764.PubMedCrossRef Li, Y., B. Chen, X. Yang, C. Zhang, Y. Jiao, P. Li, et al. 2019. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation 140: 751–764.PubMedCrossRef
47.
Zurück zum Zitat Jonasson, L., H. Grauen Larsen, A.K. Lundberg, B. Gullstrand, A.A. Bengtsson, and A. Schiopu. 2017. Stress-induced release of the S100A8/A9 alarmin is elevated in coronary artery disease patients with impaired cortisol response. Science and Reports 7: 17545.CrossRef Jonasson, L., H. Grauen Larsen, A.K. Lundberg, B. Gullstrand, A.A. Bengtsson, and A. Schiopu. 2017. Stress-induced release of the S100A8/A9 alarmin is elevated in coronary artery disease patients with impaired cortisol response. Science and Reports 7: 17545.CrossRef
48.
Zurück zum Zitat Fujiu, K., M. Shibata, Y. Nakayama, F. Ogata, S. Matsumoto, K. Noshita, et al. 2017. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nature Medicine 23: 611–622.PubMedCrossRef Fujiu, K., M. Shibata, Y. Nakayama, F. Ogata, S. Matsumoto, K. Noshita, et al. 2017. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nature Medicine 23: 611–622.PubMedCrossRef
49.
Zurück zum Zitat Fan, S., H. Zhao, Y. Liu, P. Zhang, Y. Wang, Y. Xu, et al. 2020. Isoproterenol triggers ROS/P53/S100-A9 positive feedback to aggravate myocardial damage associated with complement activation. Chemical Research in Toxicology 33: 2675–2685.PubMedCrossRef Fan, S., H. Zhao, Y. Liu, P. Zhang, Y. Wang, Y. Xu, et al. 2020. Isoproterenol triggers ROS/P53/S100-A9 positive feedback to aggravate myocardial damage associated with complement activation. Chemical Research in Toxicology 33: 2675–2685.PubMedCrossRef
50.
Zurück zum Zitat Uderhardt, S., A.J. Martins, J.S. Tsang, T. Lammermann, and R.N. Germain. 2019. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177 (541–555): e17. Uderhardt, S., A.J. Martins, J.S. Tsang, T. Lammermann, and R.N. Germain. 2019. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177 (541–555): e17.
51.
Zurück zum Zitat Bengtsson, A.A., G. Sturfelt, C. Lood, L. Ronnblom, R.F. van Vollenhoven, B. Axelsson, et al. 2012. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: Studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus. Arthritis and Rheumatism 64: 1579–1588.PubMedCrossRef Bengtsson, A.A., G. Sturfelt, C. Lood, L. Ronnblom, R.F. van Vollenhoven, B. Axelsson, et al. 2012. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: Studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus. Arthritis and Rheumatism 64: 1579–1588.PubMedCrossRef
52.
Zurück zum Zitat Hesselstrand, R., J.H.W. Distler, G. Riemekasten, D.M. Wuttge, M. Torngren, H.C. Nyhlen, et al. 2021. An open-label study to evaluate biomarkers and safety in systemic sclerosis patients treated with paquinimod. Arthritis Research & Therapy 23: 204.CrossRef Hesselstrand, R., J.H.W. Distler, G. Riemekasten, D.M. Wuttge, M. Torngren, H.C. Nyhlen, et al. 2021. An open-label study to evaluate biomarkers and safety in systemic sclerosis patients treated with paquinimod. Arthritis Research & Therapy 23: 204.CrossRef
Metadaten
Titel
Targeting S100A9 Prevents β-Adrenergic Activation–Induced Cardiac Injury
verfasst von
Jie Liu
Xin Chen
Lijun Zeng
Laiping Zhang
Fangjie Wang
Cuiping Peng
Xiaoyong Huang
Shuhui Li
Ying Liu
Weinian Shou
Xiaohui Li
Dayan Cao
Publikationsdatum
06.03.2024
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2024
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01944-w

Weitere Artikel der Ausgabe 2/2024

Inflammation 2/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.