Skip to main content
Erschienen in: Inflammation 2/2024

06.12.2023 | RESEARCH

Inhibition of Protein Disulfide Isomerase Attenuates Osteoclast Differentiation and Function via the Readjustment of Cellular Redox State in Postmenopausal Osteoporosis

verfasst von: Yi Wang, Tao Yuan, Haojue Wang, Qi Meng, Haoyang Li, Changgong Feng, Ziqing Li, Shui Sun

Erschienen in: Inflammation | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Due to the accumulation of reactive oxygen species (ROS) and heightened activity of osteoclasts, postmenopausal osteoporosis could cause severe pathological bone destruction. Protein disulfide isomerase (PDI), an endoplasmic prototypic thiol isomerase, plays a central role in affecting cellular redox state. To test whether suppression of PDI could inhibit osteoclastogenesis through cellular redox regulation, bioinformatics network analysis was performed on the causative genes, followed by biological validation on the osteoclastogenesis in vitro and ovariectomy (OVX) mice model in vivo. The analysis identified PDI as one of gene targets for postmenopausal osteoporosis, which was positively expressed during osteoclastogenesis. Therefore, PDI expression inhibitor and chaperone activity inhibitor were used to verify the effects of PDI inhibitors on osteoclastogenesis. Results demonstrated that PDI inhibitors could reduce osteoclast number and inhibit resorption function via suppression on osteoclast marker genes. The mechanisms behind the scenes were the PDI inhibitors-caused intracellular ROS reduction via enhancement of the antioxidant system. Micro-CT and histological results indicated PDI inhibitors could effectively alleviate or even prevent bone loss in OVX mice. In conclusion, our findings unveiled the suppressive effects of PDI inhibitors on osteoclastogenesis by reducing intracellular ROS, providing new therapeutic options for postmenopausal osteoporosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Compston, J.E., M.R. McClung, and W.D. Leslie. 2019. Osteoporosis. Lancet (London, England) 393: 364–376.PubMedCrossRef Compston, J.E., M.R. McClung, and W.D. Leslie. 2019. Osteoporosis. Lancet (London, England) 393: 364–376.PubMedCrossRef
2.
Zurück zum Zitat Arceo-Mendoza, R.M., and P.M. Camacho. 2021. Postmenopausal osteoporosis: Latest guidelines. Endocrinology and metabolism clinics of North America 50: 167–178.PubMedCrossRef Arceo-Mendoza, R.M., and P.M. Camacho. 2021. Postmenopausal osteoporosis: Latest guidelines. Endocrinology and metabolism clinics of North America 50: 167–178.PubMedCrossRef
3.
Zurück zum Zitat Wang, H., G. Yang, Y. Xiao, G. Luo, G. Li, and Z. Li. 2020. Friend or foe? Essential roles of osteoclast in maintaining skeletal health. BioMed research international 2020: 4791786.PubMedPubMedCentral Wang, H., G. Yang, Y. Xiao, G. Luo, G. Li, and Z. Li. 2020. Friend or foe? Essential roles of osteoclast in maintaining skeletal health. BioMed research international 2020: 4791786.PubMedPubMedCentral
4.
Zurück zum Zitat Boyle, W.J., W.S. Simonet, and D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423: 337–342.PubMedCrossRef Boyle, W.J., W.S. Simonet, and D.L. Lacey. 2003. Osteoclast differentiation and activation. Nature 423: 337–342.PubMedCrossRef
5.
Zurück zum Zitat Mohamad, N.V., S. Ima-Nirwana, and K.Y. Chin. 2020. Are Oxidative stress and inflammation mediators of bone loss due to estrogen deficiency? a review of current evidence. Endocrine, metabolic & immune disorders drug targets 20: 1478–1487.CrossRef Mohamad, N.V., S. Ima-Nirwana, and K.Y. Chin. 2020. Are Oxidative stress and inflammation mediators of bone loss due to estrogen deficiency? a review of current evidence. Endocrine, metabolic & immune disorders drug targets 20: 1478–1487.CrossRef
6.
Zurück zum Zitat Cervellati, C., and C.M. Bergamini. 2016. Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clinical chemistry and laboratory medicine 54: 739–753.PubMedCrossRef Cervellati, C., and C.M. Bergamini. 2016. Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clinical chemistry and laboratory medicine 54: 739–753.PubMedCrossRef
7.
Zurück zum Zitat Agidigbi, T. S., and C. Kim. 2019. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. International journal of molecular sciences 20. Agidigbi, T. S., and C. Kim. 2019. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. International journal of molecular sciences 20.
8.
Zurück zum Zitat Kang, I.S., and C. Kim. 2016. NADPH oxidase gp91(phox) contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Scientific reports 6: 38014.PubMedPubMedCentralCrossRef Kang, I.S., and C. Kim. 2016. NADPH oxidase gp91(phox) contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Scientific reports 6: 38014.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Sies, H., and D.P. Jones. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature reviews Molecular cell biology 21: 363–383.PubMedCrossRef Sies, H., and D.P. Jones. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature reviews Molecular cell biology 21: 363–383.PubMedCrossRef
10.
Zurück zum Zitat Ng, A., Y. H., Z. Li, M. M. Jones, S. Yang, C. Li, C. Fu, et al. 2019. Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species. eLife 8. Ng, A., Y. H., Z. Li, M. M. Jones, S. Yang, C. Li, C. Fu, et al. 2019. Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species. eLife 8.
11.
Zurück zum Zitat Kanzaki, H., F. Shinohara, I. Kanako, Y. Yamaguchi, S. Fukaya, Y. Miyamoto, et al. 2016. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox biology 8: 186–191.PubMedPubMedCentralCrossRef Kanzaki, H., F. Shinohara, I. Kanako, Y. Yamaguchi, S. Fukaya, Y. Miyamoto, et al. 2016. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox biology 8: 186–191.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Yan, G., Y. Guo, J. Guo, Q. Wang, C. Wang, and X. Wang. 2020. N-acetylcysteine attenuates lipopolysaccharide-induced osteolysis by restoring bone remodeling balance via reduction of reactive oxygen species formation during osteoclastogenesis. Inflammation 43: 1279–1292.PubMedCrossRef Yan, G., Y. Guo, J. Guo, Q. Wang, C. Wang, and X. Wang. 2020. N-acetylcysteine attenuates lipopolysaccharide-induced osteolysis by restoring bone remodeling balance via reduction of reactive oxygen species formation during osteoclastogenesis. Inflammation 43: 1279–1292.PubMedCrossRef
13.
Zurück zum Zitat Chen, K., P. Qiu, Y. Yuan, L. Zheng, J. He, C. Wang, et al. 2019. Pseurotin A inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species. Theranostics 9: 1634–1650.PubMedPubMedCentralCrossRef Chen, K., P. Qiu, Y. Yuan, L. Zheng, J. He, C. Wang, et al. 2019. Pseurotin A inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species. Theranostics 9: 1634–1650.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Zeeshan, H.M., G.H. Lee, H.R. Kim, and H.J. Chae. 2016. Endoplasmic reticulum stress and associated ROS. International journal of molecular sciences 17: 327.PubMedPubMedCentralCrossRef Zeeshan, H.M., G.H. Lee, H.R. Kim, and H.J. Chae. 2016. Endoplasmic reticulum stress and associated ROS. International journal of molecular sciences 17: 327.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Wang, L., X. Wang, and C.C. Wang. 2015. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free radical biology & medicine 83: 305–313.CrossRef Wang, L., X. Wang, and C.C. Wang. 2015. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free radical biology & medicine 83: 305–313.CrossRef
16.
Zurück zum Zitat Shergalis, A.G., S. Hu, A. Bankhead 3rd., and N. Neamati. 2020. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacology & therapeutics 210: 107525.CrossRef Shergalis, A.G., S. Hu, A. Bankhead 3rd., and N. Neamati. 2020. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacology & therapeutics 210: 107525.CrossRef
17.
Zurück zum Zitat Zhang, Z., L. Zhang, L. Zhou, Y. Lei, Y. Zhang, and C. Huang. 2019. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox biology 25: 101047.PubMedCrossRef Zhang, Z., L. Zhang, L. Zhou, Y. Lei, Y. Zhang, and C. Huang. 2019. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox biology 25: 101047.PubMedCrossRef
18.
Zurück zum Zitat Xiong, B., V. Jha, J.K. Min, and J. Cho. 2020. Protein disulfide isomerase in cardiovascular disease. Experimental & molecular medicine 52: 390–399.CrossRef Xiong, B., V. Jha, J.K. Min, and J. Cho. 2020. Protein disulfide isomerase in cardiovascular disease. Experimental & molecular medicine 52: 390–399.CrossRef
19.
Zurück zum Zitat Xu, X., J. Chiu, S. Chen, and C. Fang. 2021. Pathophysiological roles of cell surface and extracellular protein disulfide isomerase and their molecular mechanisms. British journal of pharmacology 178: 2911–2930.PubMedCrossRef Xu, X., J. Chiu, S. Chen, and C. Fang. 2021. Pathophysiological roles of cell surface and extracellular protein disulfide isomerase and their molecular mechanisms. British journal of pharmacology 178: 2911–2930.PubMedCrossRef
20.
Zurück zum Zitat Wang, L., and C. C. Wang. 2022. Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends in biochemical sciences. Wang, L., and C. C. Wang. 2022. Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends in biochemical sciences.
21.
Zurück zum Zitat Powell, L.E., and P.A. Foster. 2021. Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer medicine 10: 2812–2825.PubMedPubMedCentralCrossRef Powell, L.E., and P.A. Foster. 2021. Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer medicine 10: 2812–2825.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Khan, M.M., S. Simizu, M. Kawatani, and H. Osada. 2011. The potential of protein disulfide isomerase as a therapeutic drug target. Oncology research 19: 445–453.PubMedCrossRef Khan, M.M., S. Simizu, M. Kawatani, and H. Osada. 2011. The potential of protein disulfide isomerase as a therapeutic drug target. Oncology research 19: 445–453.PubMedCrossRef
23.
Zurück zum Zitat Wang, Y., A. Nizkorodov, K. Riemenschneider, C.S. Lee, R. Olivares-Navarrete, Z. Schwartz, et al. 2014. Impaired bone formation in Pdia3 deficient mice. PLoS ONE 9: e112708.PubMedPubMedCentralCrossRef Wang, Y., A. Nizkorodov, K. Riemenschneider, C.S. Lee, R. Olivares-Navarrete, Z. Schwartz, et al. 2014. Impaired bone formation in Pdia3 deficient mice. PLoS ONE 9: e112708.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Hino, S., S. Kondo, K. Yoshinaga, A. Saito, T. Murakami, S. Kanemoto, et al. 2010. Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis. Journal of bone and mineral metabolism 28: 131–138.PubMedCrossRef Hino, S., S. Kondo, K. Yoshinaga, A. Saito, T. Murakami, S. Kanemoto, et al. 2010. Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis. Journal of bone and mineral metabolism 28: 131–138.PubMedCrossRef
25.
Zurück zum Zitat Xiao, Y., C. Li, M. Gu, H. Wang, W. Chen, G. Luo, et al. 2018. Protein disulfide isomerase silence inhibits inflammatory functions of macrophages by suppressing reactive oxygen species and NF-κB pathway. Inflammation 41: 614–625.PubMedCrossRef Xiao, Y., C. Li, M. Gu, H. Wang, W. Chen, G. Luo, et al. 2018. Protein disulfide isomerase silence inhibits inflammatory functions of macrophages by suppressing reactive oxygen species and NF-κB pathway. Inflammation 41: 614–625.PubMedCrossRef
26.
Zurück zum Zitat Safran, M., N. Rosen, M. Twik, R. BarShir, T.I. Stein, D. Dahary, et al. 2021. The GeneCards Suite. In Practical Guide to Life Science Databases, ed. I. Abugessaisa and T. Kasukawa, 27–56. Singapore: Springer Nature Singapore.CrossRef Safran, M., N. Rosen, M. Twik, R. BarShir, T.I. Stein, D. Dahary, et al. 2021. The GeneCards Suite. In Practical Guide to Life Science Databases, ed. I. Abugessaisa and T. Kasukawa, 27–56. Singapore: Springer Nature Singapore.CrossRef
27.
Zurück zum Zitat Davis, A.P., C.J. Grondin, R.J. Johnson, D. Sciaky, J. Wiegers, T.C. Wiegers, et al. 2021. Comparative toxicogenomics database (CTD): Update 2021. Nucleic acids research 49: D1138-d1143.PubMedCrossRef Davis, A.P., C.J. Grondin, R.J. Johnson, D. Sciaky, J. Wiegers, T.C. Wiegers, et al. 2021. Comparative toxicogenomics database (CTD): Update 2021. Nucleic acids research 49: D1138-d1143.PubMedCrossRef
28.
Zurück zum Zitat Uhlén, M., L. Fagerberg, B. M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu, et al. 2015. Proteomics. Tissue-based map of the human proteome. Science. 347:1260419. Uhlén, M., L. Fagerberg, B. M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu, et al. 2015. Proteomics. Tissue-based map of the human proteome. Science. 347:1260419.
29.
30.
Zurück zum Zitat Szklarczyk, D., A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, et al. 2021. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research 49: D605-d612.PubMedCrossRef Szklarczyk, D., A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, et al. 2021. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research 49: D605-d612.PubMedCrossRef
31.
Zurück zum Zitat Li, Z., C. Li, Y. Zhou, W. Chen, G. Luo, Z. Zhang, et al. 2016. Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. American journal of physiology Endocrinology and metabolism 310: E355–E366.PubMedCrossRef Li, Z., C. Li, Y. Zhou, W. Chen, G. Luo, Z. Zhang, et al. 2016. Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. American journal of physiology Endocrinology and metabolism 310: E355–E366.PubMedCrossRef
32.
Zurück zum Zitat Chen, J., Z. Cui, Y. Wang, L. Lyu, C. Feng, D. Feng, et al. 2022. Cyclic polypeptide D7 protects bone marrow mesenchymal cells and promotes chondrogenesis during osteonecrosis of the femoral head via growth differentiation factor 15-mediated redox signaling. Oxidative medicine and cellular longevity 2022: 3182368.PubMedPubMedCentral Chen, J., Z. Cui, Y. Wang, L. Lyu, C. Feng, D. Feng, et al. 2022. Cyclic polypeptide D7 protects bone marrow mesenchymal cells and promotes chondrogenesis during osteonecrosis of the femoral head via growth differentiation factor 15-mediated redox signaling. Oxidative medicine and cellular longevity 2022: 3182368.PubMedPubMedCentral
33.
Zurück zum Zitat Li, Z., T. Liu, A. Gilmore, N.M. Gómez, C. Fu, J. Lim, et al. 2019. Regulator of G protein signaling protein 12 (Rgs12) controls mouse osteoblast differentiation via calcium channel/oscillation and Gαi-ERK signaling. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research 34: 752–764.PubMedCrossRef Li, Z., T. Liu, A. Gilmore, N.M. Gómez, C. Fu, J. Lim, et al. 2019. Regulator of G protein signaling protein 12 (Rgs12) controls mouse osteoblast differentiation via calcium channel/oscillation and Gαi-ERK signaling. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research 34: 752–764.PubMedCrossRef
34.
Zurück zum Zitat Li, D., J. Liu, B. Guo, C. Liang, L. Dang, C. Lu, et al. 2016. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nature communications 7: 10872.PubMedPubMedCentralCrossRef Li, D., J. Liu, B. Guo, C. Liang, L. Dang, C. Lu, et al. 2016. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nature communications 7: 10872.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Bouxsein, M.L., S.K. Boyd, B.A. Christiansen, R.E. Guldberg, K.J. Jepsen, and R. Müller. 2010. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research 25: 1468–1486.PubMedCrossRef Bouxsein, M.L., S.K. Boyd, B.A. Christiansen, R.E. Guldberg, K.J. Jepsen, and R. Müller. 2010. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research 25: 1468–1486.PubMedCrossRef
36.
Zurück zum Zitat Cheng, H., Z. Zheng, and T. Cheng. 2020. New paradigms on hematopoietic stem cell differentiation. Protein & cell 11: 34–44.CrossRef Cheng, H., Z. Zheng, and T. Cheng. 2020. New paradigms on hematopoietic stem cell differentiation. Protein & cell 11: 34–44.CrossRef
37.
Zurück zum Zitat Laurindo, F.R., L.A. Pescatore, and Dde C. Fernandes. 2012. Protein disulfide isomerase in redox cell signaling and homeostasis. Free radical biology & medicine 52: 1954–1969.CrossRef Laurindo, F.R., L.A. Pescatore, and Dde C. Fernandes. 2012. Protein disulfide isomerase in redox cell signaling and homeostasis. Free radical biology & medicine 52: 1954–1969.CrossRef
38.
Zurück zum Zitat Jha, V., T. Kumari, V. Manickam, Z. Assar, K.L. Olson, J.K. Min, et al. 2021. ERO1-PDI Redox signaling in health and disease. Antioxidants & redox signaling 35: 1093–1115.CrossRef Jha, V., T. Kumari, V. Manickam, Z. Assar, K.L. Olson, J.K. Min, et al. 2021. ERO1-PDI Redox signaling in health and disease. Antioxidants & redox signaling 35: 1093–1115.CrossRef
39.
Zurück zum Zitat Ping, S., S. Liu, Y. Zhou, Z. Li, Y. Li, K. Liu, et al. 2017. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis. Cell death & disease 8: e2818.CrossRef Ping, S., S. Liu, Y. Zhou, Z. Li, Y. Li, K. Liu, et al. 2017. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis. Cell death & disease 8: e2818.CrossRef
40.
Zurück zum Zitat Linz, A., Y. Knieper, T. Gronau, U. Hansen, A. Aszodi, N. Garbi, et al. 2015. ER Stress during the pubertal growth spurt results in impaired long-bone growth in chondrocyte-specific ERp57 knockout mice. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research 30: 1481–1493.PubMedCrossRef Linz, A., Y. Knieper, T. Gronau, U. Hansen, A. Aszodi, N. Garbi, et al. 2015. ER Stress during the pubertal growth spurt results in impaired long-bone growth in chondrocyte-specific ERp57 knockout mice. Journal of bone and mineral research : The official journal of the American Society for Bone and Mineral Research 30: 1481–1493.PubMedCrossRef
41.
Zurück zum Zitat Da, W., L. Tao, and Y. Zhu. 2021. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Front Endocrinol (Lausanne) 12: 675385.PubMedCrossRef Da, W., L. Tao, and Y. Zhu. 2021. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Front Endocrinol (Lausanne) 12: 675385.PubMedCrossRef
42.
Zurück zum Zitat Meng, Q., Y. Wang, T. Yuan, Y. Su, Z. Li, and S. Sun. 2023. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head. Gene Reports 33: 101833.CrossRef Meng, Q., Y. Wang, T. Yuan, Y. Su, Z. Li, and S. Sun. 2023. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head. Gene Reports 33: 101833.CrossRef
43.
Zurück zum Zitat Cong, Y., Y. Wang, T. Yuan, Z. Zhang, J. Ge, Q. Meng, et al. 2023. Macrophages in aseptic loosening: Characteristics, functions, and mechanisms. Frontiers in immunology 14: 1122057.PubMedPubMedCentralCrossRef Cong, Y., Y. Wang, T. Yuan, Z. Zhang, J. Ge, Q. Meng, et al. 2023. Macrophages in aseptic loosening: Characteristics, functions, and mechanisms. Frontiers in immunology 14: 1122057.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Huang, W., Y. Gong, L. Yan. 2023. ER Stress, the unfolded protein response and osteoclastogenesis: a review. Biomolecules. 13. Huang, W., Y. Gong, L. Yan. 2023. ER Stress, the unfolded protein response and osteoclastogenesis: a review. Biomolecules. 13.
45.
Zurück zum Zitat Wang, K., J. Niu, H. Kim, and P.E. Kolattukudy. 2011. Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. Journal of Molecular Cell Biology 3: 360–368.PubMedPubMedCentralCrossRef Wang, K., J. Niu, H. Kim, and P.E. Kolattukudy. 2011. Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. Journal of Molecular Cell Biology 3: 360–368.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Wen, Z., Q. Sun, Y. Shan, W. Xie, Y. Ding, W. Wang, et al. 2023. Endoplasmic reticulum stress in osteoarthritis: A novel perspective on the pathogenesis and treatment. Aging & Disease 14: 283–286. Wen, Z., Q. Sun, Y. Shan, W. Xie, Y. Ding, W. Wang, et al. 2023. Endoplasmic reticulum stress in osteoarthritis: A novel perspective on the pathogenesis and treatment. Aging & Disease 14: 283–286.
47.
Zurück zum Zitat He, M., D. Li, C. Fang, and Q. Xu. 2022. YTHDF1 regulates endoplasmic reticulum stress, NF-kappaB, MAPK and PI3K-AKT signaling pathways in inflammatory osteoclastogenesis. Archives of Biochemistry and Biophysics 732: 109464.PubMedCrossRef He, M., D. Li, C. Fang, and Q. Xu. 2022. YTHDF1 regulates endoplasmic reticulum stress, NF-kappaB, MAPK and PI3K-AKT signaling pathways in inflammatory osteoclastogenesis. Archives of Biochemistry and Biophysics 732: 109464.PubMedCrossRef
48.
Zurück zum Zitat Victor, P., D. Sarada, and K.M. Ramkumar. 2021. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. European journal of pharmacology 892: 173749.PubMedCrossRef Victor, P., D. Sarada, and K.M. Ramkumar. 2021. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. European journal of pharmacology 892: 173749.PubMedCrossRef
49.
Zurück zum Zitat Nomura, J., T. Hosoi, M. Kaneko, K. Ozawa, A. Nishi, Y. Nomura. 2016. Neuroprotection by endoplasmic reticulum stress-induced HRD1 and chaperones: possible therapeutic targets for Alzheimer's and Parkinson's disease. Medical Science (Basel). 4. Nomura, J., T. Hosoi, M. Kaneko, K. Ozawa, A. Nishi, Y. Nomura. 2016. Neuroprotection by endoplasmic reticulum stress-induced HRD1 and chaperones: possible therapeutic targets for Alzheimer's and Parkinson's disease. Medical Science (Basel). 4.
50.
Zurück zum Zitat Hurst, K. E., K. A. Lawrence, L. Reyes Angeles, Z. Ye, J. Zhang, D. M. Townsend, et al. 2019. Endoplasmic reticulum protein disulfide isomerase shapes T cell efficacy for adoptive cellular therapy of tumors. Cells. 8. Hurst, K. E., K. A. Lawrence, L. Reyes Angeles, Z. Ye, J. Zhang, D. M. Townsend, et al. 2019. Endoplasmic reticulum protein disulfide isomerase shapes T cell efficacy for adoptive cellular therapy of tumors. Cells. 8.
51.
Zurück zum Zitat Li, X., Y. Li, R. Wang, Q. Wang, L. Lu. 2019. Toxoflavin produced by Burkholderia gladioli from Lycoris aurea is a new broad-spectrum fungicide. Applied and environmental microbiology. 85. Li, X., Y. Li, R. Wang, Q. Wang, L. Lu. 2019. Toxoflavin produced by Burkholderia gladioli from Lycoris aurea is a new broad-spectrum fungicide. Applied and environmental microbiology. 85.
52.
Zurück zum Zitat Kyani, A., S. Tamura, S. Yang, A. Shergalis, S. Samanta, Y. Kuang, et al. 2018. Discovery and mechanistic elucidation of a class of protein disulfide isomerase inhibitors for the treatment of glioblastoma. ChemMedChem 13: 164–177.PubMedPubMedCentralCrossRef Kyani, A., S. Tamura, S. Yang, A. Shergalis, S. Samanta, Y. Kuang, et al. 2018. Discovery and mechanistic elucidation of a class of protein disulfide isomerase inhibitors for the treatment of glioblastoma. ChemMedChem 13: 164–177.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Horibe, T., H. Nagai, K. Sakakibara, Y. Hagiwara, and M. Kikuchi. 2001. Ribostamycin inhibits the chaperone activity of protein disulfide isomerase. Biochemical and biophysical research communications 289: 967–972.PubMedCrossRef Horibe, T., H. Nagai, K. Sakakibara, Y. Hagiwara, and M. Kikuchi. 2001. Ribostamycin inhibits the chaperone activity of protein disulfide isomerase. Biochemical and biophysical research communications 289: 967–972.PubMedCrossRef
54.
Zurück zum Zitat Ko, M.K., and E.P. Kay. 2004. PDI-mediated ER retention and proteasomal degradation of procollagen I in corneal endothelial cells. Experimental cell research 295: 25–35.PubMedCrossRef Ko, M.K., and E.P. Kay. 2004. PDI-mediated ER retention and proteasomal degradation of procollagen I in corneal endothelial cells. Experimental cell research 295: 25–35.PubMedCrossRef
55.
Zurück zum Zitat Veis, D. J., and C. A. O'Brien. 2022. Osteoclasts, Master Sculptors of Bone. Annual review of pathology. Veis, D. J., and C. A. O'Brien. 2022. Osteoclasts, Master Sculptors of Bone. Annual review of pathology.
56.
Zurück zum Zitat Blangy, A., G. Bompard, D. Guerit, P. Marie, J. Maurin, A. Morel, et al. 2020. The osteoclast cytoskeleton - current understanding and therapeutic perspectives for osteoporosis. Journal of cell science. 133. Blangy, A., G. Bompard, D. Guerit, P. Marie, J. Maurin, A. Morel, et al. 2020. The osteoclast cytoskeleton - current understanding and therapeutic perspectives for osteoporosis. Journal of cell science. 133.
57.
Zurück zum Zitat Xin, Y., Y. Liu, D. Liu, J. Li, C. Zhang, Y. Wang, et al. 2020. New function of RUNX2 in regulating osteoclast differentiation via the AKT/NFATc1/CTSK Axis. Calcified tissue international 106: 553–566.PubMedCrossRef Xin, Y., Y. Liu, D. Liu, J. Li, C. Zhang, Y. Wang, et al. 2020. New function of RUNX2 in regulating osteoclast differentiation via the AKT/NFATc1/CTSK Axis. Calcified tissue international 106: 553–566.PubMedCrossRef
58.
Zurück zum Zitat Zeng, X.Z., Y.Y. Zhang, Q. Yang, S. Wang, B.H. Zou, Y.H. Tan, et al. 2020. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca(2+)-NFATc1 signaling pathway. Acta pharmacologica Sinica 41: 229–236.PubMedCrossRef Zeng, X.Z., Y.Y. Zhang, Q. Yang, S. Wang, B.H. Zou, Y.H. Tan, et al. 2020. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca(2+)-NFATc1 signaling pathway. Acta pharmacologica Sinica 41: 229–236.PubMedCrossRef
59.
Zurück zum Zitat Rao, A., C. Luo, and P.G. Hogan. 1997. Transcription factors of the NFAT family: Regulation and function. Annual review of immunology 15: 707–747.PubMedCrossRef Rao, A., C. Luo, and P.G. Hogan. 1997. Transcription factors of the NFAT family: Regulation and function. Annual review of immunology 15: 707–747.PubMedCrossRef
60.
Zurück zum Zitat Yuan, X., J. Cao, T. Liu, Y.P. Li, F. Scannapieco, X. He, et al. 2015. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss. Cell death and differentiation 22: 2046–2057.PubMedPubMedCentralCrossRef Yuan, X., J. Cao, T. Liu, Y.P. Li, F. Scannapieco, X. He, et al. 2015. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss. Cell death and differentiation 22: 2046–2057.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Feno, S., G. Butera, D. Vecellio Reane, R. Rizzuto, and A. Raffaello. 2019. Crosstalk between calcium and ROS in pathophysiological conditions. Oxidative medicine and cellular longevity 2019: 9324018.PubMedPubMedCentralCrossRef Feno, S., G. Butera, D. Vecellio Reane, R. Rizzuto, and A. Raffaello. 2019. Crosstalk between calcium and ROS in pathophysiological conditions. Oxidative medicine and cellular longevity 2019: 9324018.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Kovac, S., P.R. Angelova, K.M. Holmström, Y. Zhang, A.T. Dinkova-Kostova, and A.Y. Abramov. 2015. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochimica et biophysica acta 1850: 794–801.PubMedPubMedCentralCrossRef Kovac, S., P.R. Angelova, K.M. Holmström, Y. Zhang, A.T. Dinkova-Kostova, and A.Y. Abramov. 2015. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochimica et biophysica acta 1850: 794–801.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Lu, J., and A. Holmgren. 2014. The thioredoxin antioxidant system. Free Radical Biology & Medicine 66: 75–87.CrossRef Lu, J., and A. Holmgren. 2014. The thioredoxin antioxidant system. Free Radical Biology & Medicine 66: 75–87.CrossRef
64.
Zurück zum Zitat Ferreira de Oliveira, J. M., M. Costa, T. Pedrosa, P. Pinto, C. Remedios, H. Oliveira, et al. 2014. Sulforaphane induces oxidative stress and death by p53-independent mechanism: implication of impaired glutathione recycling. PLoS One. 9:e92980. Ferreira de Oliveira, J. M., M. Costa, T. Pedrosa, P. Pinto, C. Remedios, H. Oliveira, et al. 2014. Sulforaphane induces oxidative stress and death by p53-independent mechanism: implication of impaired glutathione recycling. PLoS One. 9:e92980.
65.
Zurück zum Zitat Hu, Y., S. Urig, S. Koncarevic, X. Wu, M. Fischer, S. Rahlfs, et al. 2007. Glutathione- and thioredoxin-related enzymes are modulated by sulfur-containing chemopreventive agents. Biological Chemistry 388: 1069–1081.PubMedCrossRef Hu, Y., S. Urig, S. Koncarevic, X. Wu, M. Fischer, S. Rahlfs, et al. 2007. Glutathione- and thioredoxin-related enzymes are modulated by sulfur-containing chemopreventive agents. Biological Chemistry 388: 1069–1081.PubMedCrossRef
66.
Zurück zum Zitat Li, Z.Q., and C.H. Li. 2020. CRISPR/Cas9 from bench to bedside: What clinicians need to know before application? Military Medical Research 7: 61.PubMedPubMedCentralCrossRef Li, Z.Q., and C.H. Li. 2020. CRISPR/Cas9 from bench to bedside: What clinicians need to know before application? Military Medical Research 7: 61.PubMedPubMedCentralCrossRef
Metadaten
Titel
Inhibition of Protein Disulfide Isomerase Attenuates Osteoclast Differentiation and Function via the Readjustment of Cellular Redox State in Postmenopausal Osteoporosis
verfasst von
Yi Wang
Tao Yuan
Haojue Wang
Qi Meng
Haoyang Li
Changgong Feng
Ziqing Li
Shui Sun
Publikationsdatum
06.12.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2024
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01933-z

Weitere Artikel der Ausgabe 2/2024

Inflammation 2/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.