Skip to main content
Erschienen in: Inflammation 2/2024

26.12.2023 | RESEARCH

cGAS Mediates the Inflammatory Responses of Human Microglial Cells to Genotoxic DNA Damage

verfasst von: Alexander J. Suptela, Yasmine Radwan, Christine Richardson, Shan Yan, Kirill A. Afonin, Ian Marriott

Erschienen in: Inflammation | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Genomic instability is a key driving force for the development and progression of many age-related neurodegenerative diseases and central nervous system (CNS) cancers. Recently, the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), has been shown to detect and respond to self-DNA accumulation resulting from DNA damaging insults in peripheral cell types. cGAS has been shown to be important in the responses of microglia to DNA viruses and amyloid beta, and we have reported that it underlies the responses of human microglia to exogenous DNA. However, the role of this cytosolic sensor in the detection of self-DNA by glia is poorly understood and its ability to mediate the cellular responses of human microglia to genotoxic DNA damage has not been established. Here, we describe the ability of ionizing radiation and oxidative stress to elicit genomic DNA damage in human microglial cells and to stimulate the production of key inflammatory mediators by these cells in an NF-kB dependent manner. Importantly, we have utilized CRISPR/Cas9 and siRNA-mediated knockdown approaches and a pharmacological inhibitor of the cGAS adaptor protein stimulator of interferon genes (STING) to demonstrate that the cGAS-STING pathway plays a critical role in the generation of these microglial immune responses to such genotoxic insults. Together, these studies support the notion that cGAS mediates the detection of cytosolic self-DNA by microglia, providing a potential mechanism linking genomic instability to the development of CNS cancers and neurodegenerative disorders.
Literatur
1.
Zurück zum Zitat Zhu, L.-S., D.-Q. Wang, K. Cui, D. Liu, and L.-Q. Zhu. 2019. Emerging perspectives on DNA double-strand breaks in neurodegenerative diseases. Current Neuropharmacology 17: 1146–1157.PubMedPubMedCentralCrossRef Zhu, L.-S., D.-Q. Wang, K. Cui, D. Liu, and L.-Q. Zhu. 2019. Emerging perspectives on DNA double-strand breaks in neurodegenerative diseases. Current Neuropharmacology 17: 1146–1157.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Coppedè, F., and L. Migliore. 2015. DNA damage in neurodegenerative diseases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 776: 84–97.PubMedCrossRef Coppedè, F., and L. Migliore. 2015. DNA damage in neurodegenerative diseases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 776: 84–97.PubMedCrossRef
3.
Zurück zum Zitat Horn, V., and A. Triantafyllopoulou. 2018. DNA damage signaling and polyploid macrophages in chronic inflammation. Current Opinion in Immunology 50: 55–63.PubMedCrossRef Horn, V., and A. Triantafyllopoulou. 2018. DNA damage signaling and polyploid macrophages in chronic inflammation. Current Opinion in Immunology 50: 55–63.PubMedCrossRef
4.
Zurück zum Zitat Taffoni, C., A. Steer, J. Marines, H. Chamma, I.K. Vila, and N. Laguette. 2021. nucleic acid immunity and DNA damage response: new friends and old foes. Frontiers in Immunology 12: 1–10.CrossRef Taffoni, C., A. Steer, J. Marines, H. Chamma, I.K. Vila, and N. Laguette. 2021. nucleic acid immunity and DNA damage response: new friends and old foes. Frontiers in Immunology 12: 1–10.CrossRef
5.
Zurück zum Zitat Li, T., and Z.J. Chen. 2018. The cGAS-cGAMP-STI NG pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine 215: 1287–1299.PubMedPubMedCentralCrossRef Li, T., and Z.J. Chen. 2018. The cGAS-cGAMP-STI NG pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine 215: 1287–1299.PubMedPubMedCentralCrossRef
6.
7.
Zurück zum Zitat Miller, K.N., S.G. Victorelli, H. Salmonowicz, N. Dasgupta, T. Liu, J.F. Passos, et al. 2021. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184: 5506–5526.PubMedPubMedCentralCrossRef Miller, K.N., S.G. Victorelli, H. Salmonowicz, N. Dasgupta, T. Liu, J.F. Passos, et al. 2021. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184: 5506–5526.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Sun, L., J. Wu, F. Du, X. Chen, and Z.J. Chen. 1979. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013 (339): 786–791. Sun, L., J. Wu, F. Du, X. Chen, and Z.J. Chen. 1979. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013 (339): 786–791.
9.
Zurück zum Zitat Ablasser, A., M. Goldeck, T. Cavlar, T. Deimling, G. Witte, I. Röhl, et al. 2013. CGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498: 380–384.PubMedPubMedCentralCrossRef Ablasser, A., M. Goldeck, T. Cavlar, T. Deimling, G. Witte, I. Röhl, et al. 2013. CGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498: 380–384.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Sun, W., Y. Li, L. Chen, H. Chen, F. You, X. Zhou, et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences 106: 8653–8658.CrossRef Sun, W., Y. Li, L. Chen, H. Chen, F. You, X. Zhou, et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences 106: 8653–8658.CrossRef
11.
Zurück zum Zitat Wu, J., L. Sun, X. Chen, F. Du, H. Shi, C. Chen, et al. 1979. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013 (339): 826–830. Wu, J., L. Sun, X. Chen, F. Du, H. Shi, C. Chen, et al. 1979. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013 (339): 826–830.
12.
Zurück zum Zitat Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.PubMedCrossRef Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.PubMedCrossRef
13.
Zurück zum Zitat De Gaetano, A., K. Solodka, G. Zanini, V. Selleri, A.V. Mattioli, M. Nasi, et al. 2021. Molecular mechanisms of mtDNA-mediated inflammation. Cells 10: 2898.PubMed De Gaetano, A., K. Solodka, G. Zanini, V. Selleri, A.V. Mattioli, M. Nasi, et al. 2021. Molecular mechanisms of mtDNA-mediated inflammation. Cells 10: 2898.PubMed
14.
Zurück zum Zitat Gao, D., T. Li, X.-D. Li, X. Chen, Q.-Z. Li, M. Wight-Carter, et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences 112: E5699–E5705.CrossRef Gao, D., T. Li, X.-D. Li, X. Chen, Q.-Z. Li, M. Wight-Carter, et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences 112: E5699–E5705.CrossRef
15.
Zurück zum Zitat Mackenzie, K.J., P. Carroll, C.-A.A. Martin, O. Murina, A. Fluteau, D.J. Simpson, et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548: 461–465.PubMedPubMedCentralCrossRef Mackenzie, K.J., P. Carroll, C.-A.A. Martin, O. Murina, A. Fluteau, D.J. Simpson, et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548: 461–465.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Kumar, V. 2021. The trinity of cGAS, TLR9, and ALRs guardians of the cellular galaxy against host-derived self-DNA. Frontiers in Immunology 11: 1–31.CrossRef Kumar, V. 2021. The trinity of cGAS, TLR9, and ALRs guardians of the cellular galaxy against host-derived self-DNA. Frontiers in Immunology 11: 1–31.CrossRef
17.
Zurück zum Zitat Jakobs, C., S. Perner, and V. Hornung. 2015. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10: e0131702.PubMedPubMedCentralCrossRef Jakobs, C., S. Perner, and V. Hornung. 2015. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10: e0131702.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Cox, D.J., R.H. Field, D.G. Williams, M. Baran, A.G. Bowie, C. Cunningham, et al. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63: 812–825.PubMedPubMedCentralCrossRef Cox, D.J., R.H. Field, D.G. Williams, M. Baran, A.G. Bowie, C. Cunningham, et al. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63: 812–825.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Jeffries, A.M., and I. Marriott. 2017. Human microglia and astrocytes express cGAS-STING viral sensing components. Neuroscience Letters 658: 53–56.PubMedPubMedCentralCrossRef Jeffries, A.M., and I. Marriott. 2017. Human microglia and astrocytes express cGAS-STING viral sensing components. Neuroscience Letters 658: 53–56.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Song, X., F. Ma, and K. Herrup. 2019. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. The Journal of Neuroscience 39: 6378–6394.PubMedPubMedCentralCrossRef Song, X., F. Ma, and K. Herrup. 2019. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. The Journal of Neuroscience 39: 6378–6394.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Jin, M., H. Shiwaku, H. Tanaka, T. Obita, S. Ohuchi, Y. Yoshioka, et al. 2021. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications 12: 6565.PubMedPubMedCentralCrossRef Jin, M., H. Shiwaku, H. Tanaka, T. Obita, S. Ohuchi, Y. Yoshioka, et al. 2021. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications 12: 6565.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Wu, P.J., Y.F. Hung, H.Y. Liu, and Y.P. Hsueh. 2017. Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an Alzheimer disease mouse model. NeuroImmunoModulation 24: 29–39.PubMedCrossRef Wu, P.J., Y.F. Hung, H.Y. Liu, and Y.P. Hsueh. 2017. Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an Alzheimer disease mouse model. NeuroImmunoModulation 24: 29–39.PubMedCrossRef
23.
Zurück zum Zitat Rui, W.J., S. Li, L. Yang, Y. Liu, Y. Fan, Y.C. Hu, et al. 2022. Microglial AIM2 alleviates antiviral-related neuro-inflammation in mouse models of Parkinson’s disease. Glia 70: 2409–2425.PubMedCrossRef Rui, W.J., S. Li, L. Yang, Y. Liu, Y. Fan, Y.C. Hu, et al. 2022. Microglial AIM2 alleviates antiviral-related neuro-inflammation in mouse models of Parkinson’s disease. Glia 70: 2409–2425.PubMedCrossRef
24.
Zurück zum Zitat Ma, C., S. Li, Y. Hu, Y. Ma, Y. Wu, C. Wu, et al. 2021. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. Journal of Experimental Medicine 218: e20201796.PubMedPubMedCentralCrossRef Ma, C., S. Li, Y. Hu, Y. Ma, Y. Wu, C. Wu, et al. 2021. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. Journal of Experimental Medicine 218: e20201796.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Sterka, D., D.M. Rati, and I. Marriott. 2006. Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia 53: 322–330.PubMedCrossRef Sterka, D., D.M. Rati, and I. Marriott. 2006. Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia 53: 322–330.PubMedCrossRef
26.
Zurück zum Zitat Sterka, D., and I. Marriott. 2006. Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. Journal of Neuroimmunology 179: 65–75.PubMedCrossRef Sterka, D., and I. Marriott. 2006. Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. Journal of Neuroimmunology 179: 65–75.PubMedCrossRef
27.
Zurück zum Zitat Furr, S.R., V. Chauhan, D. Sterka, V. Grdzelishvili, and I. Marriott. 2008. Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. Journal of Neurovirology 14: 503–513.PubMedCrossRef Furr, S.R., V. Chauhan, D. Sterka, V. Grdzelishvili, and I. Marriott. 2008. Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. Journal of Neurovirology 14: 503–513.PubMedCrossRef
28.
Zurück zum Zitat Gao, P., M. Ascano, Y. Wu, W. Barchet, B.L. Gaffney, T. Zillinger, et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153: 1094–1107.PubMedPubMedCentralCrossRef Gao, P., M. Ascano, Y. Wu, W. Barchet, B.L. Gaffney, T. Zillinger, et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153: 1094–1107.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Orzalli, M.H., N.M. Broekema, B.A. Diner, D.C. Hancks, N.C. Elde, I.M. Cristea, et al. 2015. CGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proceedings of the National Academy of Sciences 112: E1773–E1781.CrossRef Orzalli, M.H., N.M. Broekema, B.A. Diner, D.C. Hancks, N.C. Elde, I.M. Cristea, et al. 2015. CGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proceedings of the National Academy of Sciences 112: E1773–E1781.CrossRef
30.
Zurück zum Zitat Ruangkiattikul, N., A. Nerlich, K. Abdissa, S. Lienenklaus, A. Suwandi, N. Janze, et al. 2017. cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8: 1303–1315.PubMedPubMedCentralCrossRef Ruangkiattikul, N., A. Nerlich, K. Abdissa, S. Lienenklaus, A. Suwandi, N. Janze, et al. 2017. cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8: 1303–1315.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Aguirre, S., P. Luthra, M.T. Sanchez-Aparicio, A.M. Maestre, J. Patel, F. Lamothe, et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nature Microbiology 2: 1–11.CrossRef Aguirre, S., P. Luthra, M.T. Sanchez-Aparicio, A.M. Maestre, J. Patel, F. Lamothe, et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nature Microbiology 2: 1–11.CrossRef
32.
Zurück zum Zitat Wong, E.B., B. Montoya, M. Ferez, C. Stotesbury, and L.J. Sigal. 2019. Resistance to ectromelia virus infection requires cGAS in bone marrow-derived cells which can be bypassed with cGAMP therapy. PLoS Pathogens 15: e1008239.PubMedPubMedCentralCrossRef Wong, E.B., B. Montoya, M. Ferez, C. Stotesbury, and L.J. Sigal. 2019. Resistance to ectromelia virus infection requires cGAS in bone marrow-derived cells which can be bypassed with cGAMP therapy. PLoS Pathogens 15: e1008239.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Wu, Y., K. Song, W. Hao, J. Li, L. Wang, and S. Li. 2022. Nuclear soluble cGAS senses double-stranded DNA virus infection. Communications Biology 5: 1–13.CrossRef Wu, Y., K. Song, W. Hao, J. Li, L. Wang, and S. Li. 2022. Nuclear soluble cGAS senses double-stranded DNA virus infection. Communications Biology 5: 1–13.CrossRef
34.
Zurück zum Zitat Reinert, L.S., K. Lopušná, H. Winther, C. Sun, M.K. Thomsen, R. Nandakumar, et al. 2016. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications 7: 13348.PubMedPubMedCentralCrossRef Reinert, L.S., K. Lopušná, H. Winther, C. Sun, M.K. Thomsen, R. Nandakumar, et al. 2016. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications 7: 13348.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Zhang, Q., Z. Tang, R. An, L. Ye, and B. Zhong. 2020. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Cell Research 30: 914–927.PubMedPubMedCentralCrossRef Zhang, Q., Z. Tang, R. An, L. Ye, and B. Zhong. 2020. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Cell Research 30: 914–927.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Fruhwürth, S., L.S. Reinert, C. Öberg, M. Sakr, M. Henricsson, H. Zetterberg, et al. 2023. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. https://www.science.org.CrossRef Fruhwürth, S., L.S. Reinert, C. Öberg, M. Sakr, M. Henricsson, H. Zetterberg, et al. 2023. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. https://​www.​science.​org.CrossRef
37.
39.
40.
Zurück zum Zitat Gulen, M.F., N. Samson, A. Keller, M. Schwabenland, C. Liu, S. Glück, et al. 2023. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620: 374–380.PubMedPubMedCentralCrossRef Gulen, M.F., N. Samson, A. Keller, M. Schwabenland, C. Liu, S. Glück, et al. 2023. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620: 374–380.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Johnson, M.B., J.R. Halman, A.R. Burmeister, S. Currin, E.F. Khisamutdinov, K.A. Afonin, et al. 2020. Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells. Journal of Neuroinflammation 17: 1–14.CrossRef Johnson, M.B., J.R. Halman, A.R. Burmeister, S. Currin, E.F. Khisamutdinov, K.A. Afonin, et al. 2020. Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells. Journal of Neuroinflammation 17: 1–14.CrossRef
42.
Zurück zum Zitat Burmeister, A.R., M.B. Johnson, V.S. Chauhan, M.J. Moerdyk-Schauwecker, A.D. Young, I.D. Cooley, et al. 2017. Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. Journal of Neuroinflammation 14: 245.PubMedPubMedCentralCrossRef Burmeister, A.R., M.B. Johnson, V.S. Chauhan, M.J. Moerdyk-Schauwecker, A.D. Young, I.D. Cooley, et al. 2017. Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. Journal of Neuroinflammation 14: 245.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Garcia-Mesa, Y., T.R. Jay, M.A. Checkley, B. Luttge, C. Dobrowolski, S. Valadkhan, et al. 2017. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. Journal of Neurovirology 23: 47–66.PubMedCrossRef Garcia-Mesa, Y., T.R. Jay, M.A. Checkley, B. Luttge, C. Dobrowolski, S. Valadkhan, et al. 2017. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. Journal of Neurovirology 23: 47–66.PubMedCrossRef
45.
Zurück zum Zitat Moravan, M.J., J.A. Olschowka, J.P. Williams, and M.K. O’Banion. 2011. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiation Research 176: 459–473.PubMedPubMedCentralCrossRef Moravan, M.J., J.A. Olschowka, J.P. Williams, and M.K. O’Banion. 2011. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiation Research 176: 459–473.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Mueller, S., G. Millonig, and G.N. Waite. 2009. The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Advances in Medical Sciences 54: 121–135.PubMedCrossRef Mueller, S., G. Millonig, and G.N. Waite. 2009. The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Advances in Medical Sciences 54: 121–135.PubMedCrossRef
47.
Zurück zum Zitat Porciani, D., L. Tedeschi, L. Marchetti, L. Citti, V. Piazza, F. Beltram, et al. 2015. Aptamer-mediated codelivery of doxorubicin and NF-κB decoy enhances chemosensitivity of pancreatic tumor cells. Molecular Therapy-Nucleic Acids 4: e235.PubMedPubMedCentralCrossRef Porciani, D., L. Tedeschi, L. Marchetti, L. Citti, V. Piazza, F. Beltram, et al. 2015. Aptamer-mediated codelivery of doxorubicin and NF-κB decoy enhances chemosensitivity of pancreatic tumor cells. Molecular Therapy-Nucleic Acids 4: e235.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Ke, W., E. Hong, R.F. Saito, M.C. Rangel, J. Wang, M. Viard, et al. 2019. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-κB in human cells. Nucleic Acids Research 47: 1350–1361.PubMedCrossRef Ke, W., E. Hong, R.F. Saito, M.C. Rangel, J. Wang, M. Viard, et al. 2019. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-κB in human cells. Nucleic Acids Research 47: 1350–1361.PubMedCrossRef
49.
Zurück zum Zitat Shlyakhtenko, L.S., A.A. Gall, A. Filonov, Z. Cerovac, A. Lushnikov, and Y.L. Lyubchenko. 2003. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97: 279–287.PubMedCrossRef Shlyakhtenko, L.S., A.A. Gall, A. Filonov, Z. Cerovac, A. Lushnikov, and Y.L. Lyubchenko. 2003. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97: 279–287.PubMedCrossRef
50.
Zurück zum Zitat Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, and F. Zhang. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8: 2281–2308.PubMedPubMedCentralCrossRef Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, and F. Zhang. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8: 2281–2308.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Einor, D., A. Bonisoli-Alquati, D. Costantini, T.A. Mousseau, and A.P. Møller. 2016. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Science of the Total Environment 548–549: 463–471.PubMedCrossRef Einor, D., A. Bonisoli-Alquati, D. Costantini, T.A. Mousseau, and A.P. Møller. 2016. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Science of the Total Environment 548–549: 463–471.PubMedCrossRef
52.
Zurück zum Zitat Maekawa, H., T. Inoue, H. Ouchi, T.M. Jao, R. Inoue, H. Nishi, et al. 2019. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Reports 29: 1261–1273.e6. Maekawa, H., T. Inoue, H. Ouchi, T.M. Jao, R. Inoue, H. Nishi, et al. 2019. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Reports 29: 1261–1273.e6.
53.
Zurück zum Zitat Liu, S., M. Feng, and W. Guan. 2016. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. International Journal of Cancer 139: 736–741.PubMedCrossRef Liu, S., M. Feng, and W. Guan. 2016. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. International Journal of Cancer 139: 736–741.PubMedCrossRef
54.
55.
Zurück zum Zitat de Oliveira Mann, C.C., and P.J. Kranzusch. 2017. cGAS conducts micronuclei DNA surveillance. Trends in Cell Biology 27: 697–698.PubMedCrossRef de Oliveira Mann, C.C., and P.J. Kranzusch. 2017. cGAS conducts micronuclei DNA surveillance. Trends in Cell Biology 27: 697–698.PubMedCrossRef
56.
Zurück zum Zitat Zhao, Y., B. Liu, L. Xu, S. Yu, J. Fu, J. Wang, et al. 2021. ROS-induced mtDNA release: the emerging messenger for communication between neurons and innate immune cells during neurodegenerative disorder progression. Antioxidants 10: 1917.PubMedPubMedCentralCrossRef Zhao, Y., B. Liu, L. Xu, S. Yu, J. Fu, J. Wang, et al. 2021. ROS-induced mtDNA release: the emerging messenger for communication between neurons and innate immune cells during neurodegenerative disorder progression. Antioxidants 10: 1917.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Motwani, M., and K.A. Fitzgerald. 2017. cGAS Micro-manages genotoxic stress. Immunity 47: 616–617.PubMedCrossRef Motwani, M., and K.A. Fitzgerald. 2017. cGAS Micro-manages genotoxic stress. Immunity 47: 616–617.PubMedCrossRef
58.
Zurück zum Zitat Bakhoum, S.F., B. Ngo, A.M. Laughney, J.A. Cavallo, C.J. Murphy, P. Ly, et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553: 467–472.PubMedPubMedCentralCrossRef Bakhoum, S.F., B. Ngo, A.M. Laughney, J.A. Cavallo, C.J. Murphy, P. Ly, et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553: 467–472.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Sharma, M., S. Rajendrarao, N. Shahani, U.N. Ramírez-Jarquín, and S. Subramaniam. 2020. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proceedings of the National Academy of Sciences 117: 15989–15999.CrossRef Sharma, M., S. Rajendrarao, N. Shahani, U.N. Ramírez-Jarquín, and S. Subramaniam. 2020. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proceedings of the National Academy of Sciences 117: 15989–15999.CrossRef
60.
Zurück zum Zitat Mohr, L., E. Toufektchan, P. von Morgen, K. Chu, A. Kapoor, and J. Maciejowski. 2021. ER-directed TREX1 limits cGAS activation at micronuclei. Molecular Cell 81: 724–738.e9.PubMedPubMedCentralCrossRef Mohr, L., E. Toufektchan, P. von Morgen, K. Chu, A. Kapoor, and J. Maciejowski. 2021. ER-directed TREX1 limits cGAS activation at micronuclei. Molecular Cell 81: 724–738.e9.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Harding, S.M., J.L. Benci, J. Irianto, D.E. Discher, A.J. Minn, and R.A. Greenberg. 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548: 466–470.PubMedPubMedCentralCrossRef Harding, S.M., J.L. Benci, J. Irianto, D.E. Discher, A.J. Minn, and R.A. Greenberg. 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548: 466–470.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Zhao, M., F. Wang, J. Wu, Y. Cheng, Y. Cao, X. Wu, et al. 2021. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 17: 3976–3991.PubMedPubMedCentralCrossRef Zhao, M., F. Wang, J. Wu, Y. Cheng, Y. Cao, X. Wu, et al. 2021. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 17: 3976–3991.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520: 553–557.PubMedPubMedCentralCrossRef West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520: 553–557.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Guo, Y., R. Gu, D. Gan, F. Hu, G. Li, and G. Xu. 2020. Mitochondrial DNA drives noncanonical inflammation activation via cGAS–STING signaling pathway in retinal microvascular endothelial cells. Cell Communication and Signaling 18: 1–12. Guo, Y., R. Gu, D. Gan, F. Hu, G. Li, and G. Xu. 2020. Mitochondrial DNA drives noncanonical inflammation activation via cGAS–STING signaling pathway in retinal microvascular endothelial cells. Cell Communication and Signaling 18: 1–12.
65.
Zurück zum Zitat Huang, L.S., Z. Hong, W. Wu, S. Xiong, M. Zhong, X. Gao, et al. 2020. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52: 475–486.e5.PubMedPubMedCentralCrossRef Huang, L.S., Z. Hong, W. Wu, S. Xiong, M. Zhong, X. Gao, et al. 2020. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52: 475–486.e5.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Nadalutti, C.A., S. Ayala-Peña, and J.H. Santos. 2022. Mitochondrial DNA damage as driver of cellular outcomes. American Journal of Physiology. Cell Physiology 322: C136–C150.PubMedCrossRef Nadalutti, C.A., S. Ayala-Peña, and J.H. Santos. 2022. Mitochondrial DNA damage as driver of cellular outcomes. American Journal of Physiology. Cell Physiology 322: C136–C150.PubMedCrossRef
67.
Zurück zum Zitat Zhang, W., G. Li, R. Luo, J. Lei, Y. Song, B. Wang, et al. 2022. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Experimental & Molecular Medicine 54: 129–142.CrossRef Zhang, W., G. Li, R. Luo, J. Lei, Y. Song, B. Wang, et al. 2022. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Experimental & Molecular Medicine 54: 129–142.CrossRef
68.
Zurück zum Zitat Chen, H., H. Chen, J. Zhang, Y. Wang, A. Simoneau, H. Yang, et al. 2020. cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances 6: eabb8941.PubMedPubMedCentralCrossRef Chen, H., H. Chen, J. Zhang, Y. Wang, A. Simoneau, H. Yang, et al. 2020. cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances 6: eabb8941.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Liu, H., H. Zhang, X. Wu, D. Ma, J. Wu, L. Wang, et al. 2018. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563: 131–136.PubMedCrossRef Liu, H., H. Zhang, X. Wu, D. Ma, J. Wu, L. Wang, et al. 2018. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563: 131–136.PubMedCrossRef
70.
Zurück zum Zitat Jiang, H., X. Xue, S. Panda, A. Kawale, R.M. Hooy, F. Liang, et al. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO Journal 38: 1–17.CrossRef Jiang, H., X. Xue, S. Panda, A. Kawale, R.M. Hooy, F. Liang, et al. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO Journal 38: 1–17.CrossRef
71.
Zurück zum Zitat Hinkle, J.T., J. Patel, N. Panicker, S.S. Karuppagounder, D. Biswas, B. Belingon, et al. 2022. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proceedings of the National Academy of Sciences 119: 1–8.CrossRef Hinkle, J.T., J. Patel, N. Panicker, S.S. Karuppagounder, D. Biswas, B. Belingon, et al. 2022. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proceedings of the National Academy of Sciences 119: 1–8.CrossRef
Metadaten
Titel
cGAS Mediates the Inflammatory Responses of Human Microglial Cells to Genotoxic DNA Damage
verfasst von
Alexander J. Suptela
Yasmine Radwan
Christine Richardson
Shan Yan
Kirill A. Afonin
Ian Marriott
Publikationsdatum
26.12.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2024
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01946-8

Weitere Artikel der Ausgabe 2/2024

Inflammation 2/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.