Skip to main content
Erschienen in: Die Ophthalmologie 1/2023

Open Access 13.09.2022 | Leitthema

Web-based gene expression analysis—paving the way to decode healthy and diseased ocular tissue

verfasst von: Julian Wolf, Thabo Lapp, Thomas Reinhard, Hansjürgen Agostini, Günther Schlunck, Clemens Lange

Erschienen in: Die Ophthalmologie | Sonderheft 1/2023

Abstract

Background

Gene expression analysis using RNA sequencing has helped to improve the understanding of many diseases. Databases, such as the Gene Expression Omnibus database of the National Center for Biotechnology Information provide RNA sequencing raw data from various diseased tissue types but their analysis requires advanced bioinformatics skills. Therefore, specific ocular databases provide the transcriptional profiles of different ocular tissues and in addition enable intuitive web-based data analysis.

Objective

The aim of this narrative review is to provide an overview of ocular transcriptome databases and to compare them with the Human Eye Transcriptome Atlas newly established in Freiburg.

Methods

PubMed literature search.

Results

A total of nine ocular transcriptome databases focusing on different aspects were identified. The iSyTE and Express platforms specialize in gene expression during lens and retinal development in mice, whereas retina.tigem.it, Eye in a Disk, and Spectacle focus on selected ocular tissues such as the retina. Spectacle, UCSC Cell Browser and Single Cell Portal allow intuitive exploration of single cell RNA sequencing data derived from retinal, choroid, cornea, iris, trabecular meshwork and sclera specimens. The microarray profiles of a variety of healthy ocular tissues are included in the Ocular Tissue Database. The Human Eye Transcriptome Atlas provides the largest collection of different ocular tissue types, contains the highest number of ocular diseases and is characterized by a high level of quality achieved by methodological consistency.

Conclusion

Ocular transcriptome databases provide comprehensive and intuitive insights into the transcriptional profiles of a variety of healthy and diseased ocular tissues. Thus, they improve our understanding of the underlying molecular mediators, support hypothesis generation and help in the search for new diagnostic and therapeutic targets for various ocular diseases.
Hinweise
The German version of this article can be found under https://​doi.​org/​10.​1007/​s00347-022-01592-9.
Scan QR code & read article online
Next generation sequencing (NGS) enables the simultaneous sequencing of millions of DNA or RNA molecules and has revolutionized basic science and translational research in recent years, uncovering disease-relevant processes. While the genome describes the information of the DNA, which is identical in each cell, the transcriptome represents the total of all RNA molecules and is thus dynamic and varies between different cells and tissues. Transcriptome analysis using RNA sequencing thus allows determination of the functional state of a tissue and is increasingly applied in clinical routine, e.g., for diagnostic classification of cancers [9], estimation of cancer prognosis [28], and prediction of treatment response [7]. Large databases such as the Cancer Genome Atlas [6] provide the sequencing raw data generated in previous studies, although hardly any ocular tissue has been included so far. Moreover, the analysis of the raw data requires advanced bioinformatics skills. Therefore, in recent years, special web-based and user-friendly databases have been established, which allow intuitive exploration and comparative analysis of transcriptional profiles of ocular tissues. The aim of this review is to provide an overview of the currently available ocular transcriptome databases and to highlight their advantages and limitations.

Principle of RNA sequencing

RNA sequencing allows the nucleotide sequences of millions of RNA molecules in a sample to be analyzed [24]. By comparing these sequences with the known reference genome, it is possible to identify and quantify different RNA molecules. The RNA serves as a template to produce proteins or can exert regulatory functions in this process. Thus, transcriptome analysis provides unbiased insights into the functional state of a tissue (Fig. 1).
Comparing samples from diseased and healthy tissues can provide detailed insights into the pathophysiology of a disease and can identify novel diagnostic and prognostic biomarkers. Thanks to the Human Genome Project [13] and technological advances, the costs and time of sequencing have significantly decreased in recent years, and it is likely that this trend will lead to an increased use of the technology in clinical routine [8]. In addition to unfixed samples, specialized sequencing methods can analyze the transcriptional profile of archived formalin-fixed and paraffin-embedded samples, greatly facilitating the analysis of rare diseases [2].

Application in oncology

Transcriptome analysis has so far been used in particular in oncology [7, 9, 28]. For example, using transcriptome data from lung tumors and control tissue, diagnostic biomarkers were identified that enabled differentiation between tumor and control tissue with an accuracy of 98% in an independent validation dataset consisting of over 1000 tumors [9]. In addition, squamous cell and adenocarcinoma of the lung were differentiated with a classification accuracy of 95% [9]. Another example of an application of RNA sequencing in clinical routine is the estimation of tumor prognosis based on its transcriptional profile. Uhlen et al. analyzed the transcriptome of over 8000 samples of the most common cancer types and identified prognostically relevant biomarkers for each entity, which allowed the prognosis to be estimated [28]. The prediction of treatment response of a tumor also represents an interesting and clinically useful application of transcriptome analysis. The molecular characterization of various cancer types using RNA and DNA sequencing enabled classification across cancer types into four molecular subtypes with subtype-specific response rates to immune checkpoint inhibitor therapy, thus, providing a foundation for personalized cancer therapy [7]. A recently published statement of the German Medical Association (Bundesärztekammer) assumes that in the next few years, molecular tumor classification will become the standard procedure for most patients starting at the initial diagnosis with the aim to provide a precise and personalized treatment strategy [20].

Application in ophthalmology

In ophthalmology, RNA sequencing has been comparatively rarely used so far, especially in clinical practice. Recently, a gene-expression-based diagnostic classification of conjunctival squamous cell carcinoma and papilloma was described [3, 15]. In addition, gene expression of specific cell receptors mediating SARS-CoV‑2 infection has been investigated in ocular surface tissues [14] and intraocular tissues [16] using RNA sequencing. Hyalocytes from the vitreous of patients with epiretinal membranes or macular holes were also recently characterized as an active and immunomodulatory cell population using RNA sequencing [4]. A prognostic gene expression signature for ocular tumors was successfully obtained for choroidal and conjunctival melanoma [21, 32]. Based on the transcriptional profile, uveal melanoma was classified into four prognostically relevant molecular subtypes [21]. This classification achieved a higher predictive power for distant metastases 5 years after brachytherapy than the traditional classification according to the American Joint Committee on Cancer Staging Manual (8th Edition) [17]. Likewise for conjunctival melanoma, 20 prognostically relevant biomarkers have been identified to estimate the risk of local recurrence or distant metastases [32]. For neovascular age-related macular degeneration (nAMD), RNA sequencing of choroidal neovascularization (CNV) membranes identified calprotectin (S100A8/S100A9) and secreted phosphoprotein 1 (SPP1) as novel nAMD-associated factors [22, 23, 31]. Intravitreal injection of an SPP1 inhibitor significantly modulated CNV size in the murine laser CNV model, highlighting the role of the factor as a potential new therapeutic target for nAMD [23].

Transcriptome databases

With technological progress leading to a significant increase in transcriptome analyses, large databases containing a variety of publicly available transcriptome datasets of different diseases have emerged in recent years [6, 10]. One of the largest databases is the Cancer Genome Atlas, which to date contains the sequencing data of over 84,000 tumor samples from 67 different entities [6]. The diversity of these data has made it possible to catalog typical genetic and molecular alterations occurring in different tumors, both to increase knowledge of each tumor entity and to improve understanding of cross-entity mechanisms of carcinogenesis [11]. In addition, the raw sequencing data are publicly available and can be used, for example, as a validation dataset [9]. Reference should also be made at this point to the Human Protein Atlas [27], which catalogs human proteins in cells, tissues, and organs using a combination of various “omics” technologies, such as mass spectrometry and antibody-based proteomics. Despite the numerous possibilities mentioned above, the Cancer Genome Atlas does not yet include ocular tissues, with the exception of uveal melanoma. Although efficient algorithms exist to analyze the available raw sequencing data, they require advanced bioinformatics skills and are also relatively time-consuming. For these reasons, there is a need for databases that contain transcriptional profiles of ocular tissues while allowing intuitive data analysis.

Ocular transcriptome databases

Here, we provide an overview of the available ocular transcriptome databases (Table 1).
Table 1
Overview of searchable ocular transcriptome databases
Database
iSyTE 2.0
Express
retina.tigem.it
Spectacle
UCSC Cell
Browser
Broad Institute
Single Cell
Portal
Eye in a Disk
Ocular Tissue Database
Human Eye Transcriptome Atlas
Healthy tissue
Lens
Lens
Retina
Retina
Retina
RPE/Choroid
Retina
RPE/Choroid
Cornea
Cornea
Iris
TMW
Sclera
Retina
RPE/Choroid
Cornea
Lens
Retina
RPE/Choroid
Cornea
Sclera
TMW
Iris
Ciliary body
Lens
Optic nerve head
Optic nerve
Retina
RPE/Choroid
Conjunctiva
Cornea
Lid
Lacrimal gland
Optic nerve
Retina periphery
Retina center
RPE/Choroid
ILM
retinal Microglia
Hyalocytes
Diseased tissue
Autoimmune retinopathy
RPE nAMD
RPE nAMD
Retina AMD
Conj. SCC
Conj. papilloma
Conj. melanoma
Pterygium
CNV-membrane
Epiretinal membrane
PDR membrane
PVR epiretinal
PVR subretinal
Tissue types
1
2
1
4
4
6
5
10
20
Samples
42
56
50
23
23
18
829
6
139
Species
Murine
Murine
Human
Human
Human
Human,
porcine
Human
Human
Human
Tissue source
Mouse
Mouse
Postmortal
Postmortal
Postmortal
Postmortal
Postmortal &
stem cells
Postmortal
Surgical specimens
Method
Microarray
RNA-Seq
RNA-Seq
scRNA-Seq
scRNA-Seq
scRNA-Seq
RNA-Seq
Microarray
RNA-Seq
Methodological homogeneitya
No
No
Yes
No
No
No
No
Yes
Yes
Comparative analysisb
Yes
Yes
Yes
No
No
No
Yes
Yes
Yes
Link
Reference
[11]
[5]
[18]
[29]
[24]
[25]
[30]
[33]
AMD age-related macular degeneration, Conj. conjunctiva, CNV choroidal neovascularization, FFPE formalin-fixed and paraffin-embedded, ILM internal limiting membrane, nAMD neovascular AMD, PDR proliferative diabetic retinopathy, PVR proliferative vitreoretinopathy, RNA-Seq RNA-sequencing, RPE retinal pigment epithelium, scRNA-Seq single-cell RNA-Seq, TMW trabecular meshwork, UCSC University of California, Santa Cruz
aMethodological homogeneity combines the following quality criteria: Confirmation of histological diagnosis by experienced ophthalmic pathologists, applying the same sequencing protocol for all samples to reduce technical variability
bComparative analysis: all samples were integrated in the same bioinformatic model, allowing to normalize gene expression between different tissue types

iSyTE and Express

The iSyTE (https://​research.​bioinformatics.​udel.​edu/​iSyTE) [12] and Express (https://​sysbio.​sitehost.​iu.​edu/​express) [5] databases provide the transcriptional profiles of murine lens and retina samples, including a wide range of embryonic and postnatal stages. This enables intuitive analysis and visualization of gene expression at different stages of lens and retina development. The raw data are largely derived from publicly available datasets generated by varying sequencing protocols at different institutions, therefore limiting these databases due to methodological inhomogeneity. In addition, microarray technology, which the iSyTE database is based on, is limited by higher technical variability compared to RNA sequencing, as well as by the lack of detection of rare and novel transcripts [18]. Moreover, microarray analyses can only detect those transcripts for which a corresponding probe is available, meaning that unlike RNA sequencing, it is not a completely unbiased analysis [18].

retina.tigem.it

The retina.tigem.it database (http://​retina.​tigem.​it) contains the transcriptional profiles of 50 healthy human retinas [19], thus, providing a comprehensive and intuitively searchable reference transcriptome dataset of the human retina. However, the samples are postmortem tissue, which is subject to rapid RNA degradation due to the prolonged period between death and preservation, thereby limiting the validity of the data [1, 22].

Spectacle, UCSC Cell Browser, and Single Cell Portal

The Spectacle (http://​singlecell-eye.​com), UCSC Cell Browser (https://​cells.​ucsc.​edu/​?​bp=​eye), and Single Cell Portal (https://​singlecell.​broadinstitute.​org) platforms enable exploration of single-cell RNA sequencing data from human retina, choroid/RPE, cornea, iris, trabecular meshwork, and scleral tissue, and also contain diseased tissue from patients with autoimmune retinopathy or neovascular AMD [29]. Even without bioinformatics expertise, the user can analyze which cell types express a specific gene and which subpopulations exist within a cell type, as well as explore cell type-specific marker genes. All three databases are based on postmortem tissue, thus, previously mentioned limitations need to be considered.

Eye in a Disk

The Eye in a Disk database (https://​eyeIntegration.​nei.​nih.​gov) is currently the largest ocular transcriptome database with 829 samples in total [26], although relatively few different tissue types (retina, choroid/RPE, cornea, and lens) are available. It is the only database which allows comparison of ocular transcriptional profiles with non-ocular tissues. Eye in a Disk is limited by postmortem or stem cell-derived tissue and methodological inhomogeneity.

Ocular Tissue Database

The Ocular Tissue Database (https://​genome.​uiowa.​edu/​otdb) provides the transcriptional profiles of a relatively large number of various healthy human ocular tissue types (10 entities) [30]. However, the database does not include diseased ocular entities and is also limited by microarray technology and postmortem tissue.

Human Eye Transcriptome Atlas

The Human Eye Transcriptome Atlas which was recently developed by our group (https://​www.​eye-transcriptome.​com, [33]) provides the largest number of different ocular tissue types of all currently available databases and contains the highest number of diseased ocular entities including conjunctival melanoma, conjunctival squamous cell carcinoma, conjunctival papilloma, pterygia, as well as epiretinal membranes, choroidal neovascular membranes from patients with neovascular AMD, retinal neovascular membranes from patients with proliferative diabetic retinopathy, and membranes from patients with proliferative vitreoretinopathy (epi- and subretinal) (Fig. 2). With a total of 139 transcriptome datasets, the Human Eye Transcriptome Atlas is one of the two largest databases and is the only database that, in contrast to databases describing postmortem tissue, contains surgically removed tissue samples that were either transferred to RNA stabilization solution or underwent FFPE (formalin-fixed and paraffin-embedded) processing immediately after surgical removal [2, 4]. This approach offers the advantage of reducing the rapid RNA degradation which occurs in postmortem samples [1, 22]. All samples included in the Human Eye Transcriptome Atlas were collected, processed and assessed by experienced ophthalmic pathologists at the same institution, and sequenced using the same sequencing protocol. This ensures a high standard of sample quality and also reduces technical variability between samples.

Conclusion

Transcriptome databases such as the Cancer Genome Atlas [6] so far contain only very few ocular tissues and provide only the sequencing raw data, which require advanced bioinformatics skills to analyze. Therefore, specialized databases with different application focuses have emerged to provide transcriptional profiles of ocular tissues while enabling intuitive data analysis. Regarding the databases summarized in this review, Spectacle, the UCSC Cell Browser, and the Broad Institute’s Single Cell Portal allow intuitive exploration of single-cell RNA sequencing data from retina, choroid, cornea, iris, trabecular meshwork, and scleral tissues. The Human Eye Transcriptome Atlas provides the largest number of different ocular tissue types, contains the highest number of diseased ocular entities, and achieves a high standard of quality through methodological homogeneity. Ocular transcriptome databases provide comprehensive and intuitive insights into the transcriptional profiles of various ocular tissues and diseases, allowing rapid hypothesis testing in the search for new diagnostic and therapeutic targets.

Declarations

Conflict of interest

J. Wolf, T. Lapp, T. Reinhard, H. Agostini, G. Schlunck, and C. Lange declare that they have no competing interests. All authors are involved in the Human Eye Transcriptome Atlas, which was self-funded and published without commercial influence or interest.
For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.
The supplement containing this article is not sponsored by industry.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

Die Ophthalmologie

Print-Titel

  • Umfassende Themenschwerpunkte mit klaren Handlungsempfehlungen
  • Praxisrelevante CME-Fortbildung in jedem Heft
  • Organ der Deutschen Ophthalmologischen Gesellschaft

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Blair JA, Wang C, Hernandez D et al (2016) Individual case analysis of postmortem interval time on brain tissue preservation. PLoS ONE 11:e151615CrossRef Blair JA, Wang C, Hernandez D et al (2016) Individual case analysis of postmortem interval time on brain tissue preservation. PLoS ONE 11:e151615CrossRef
2.
Zurück zum Zitat Boneva S, Schlecht A, Bohringer D et al (2020a) 3′ MACE RNA-sequencing allows for transcriptome profiling in human tissue samples after long-term storage. Lab Invest 100:1345–1355CrossRef Boneva S, Schlecht A, Bohringer D et al (2020a) 3′ MACE RNA-sequencing allows for transcriptome profiling in human tissue samples after long-term storage. Lab Invest 100:1345–1355CrossRef
3.
Zurück zum Zitat Boneva S, Schlecht A, Zhang P et al (2020b) MACE RNA sequencing analysis of conjunctival squamous cell carcinoma and papilloma using formalin-fixed paraffin-embedded tumor tissue. Sci Rep 10:21292CrossRef Boneva S, Schlecht A, Zhang P et al (2020b) MACE RNA sequencing analysis of conjunctival squamous cell carcinoma and papilloma using formalin-fixed paraffin-embedded tumor tissue. Sci Rep 10:21292CrossRef
4.
Zurück zum Zitat Boneva SK, Wolf J, Rosmus DD et al (2020) Transcriptional profiling uncovers human hyalocytes as a unique innate immune cell population. Front Immunol 11:567274CrossRef Boneva SK, Wolf J, Rosmus DD et al (2020) Transcriptional profiling uncovers human hyalocytes as a unique innate immune cell population. Front Immunol 11:567274CrossRef
5.
Zurück zum Zitat Budak G, Dash S, Srivastava R et al (2018) Express: a database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues. Exp Eye Res 168:57–68CrossRef Budak G, Dash S, Srivastava R et al (2018) Express: a database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues. Exp Eye Res 168:57–68CrossRef
6.
Zurück zum Zitat Cancer Genome Atlas Research Network, Research N, Weinstein JN, Collisson EA et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120CrossRef Cancer Genome Atlas Research Network, Research N, Weinstein JN, Collisson EA et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120CrossRef
8.
Zurück zum Zitat van Dijk EL, Auger H, Jaszczyszyn Y et al (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426CrossRef van Dijk EL, Auger H, Jaszczyszyn Y et al (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426CrossRef
9.
Zurück zum Zitat Girard L, Rodriguez-Canales J, Behrens C et al (2016) An expression signature as an aid to the histologic classification of non-small cell lung cancer. Clin Cancer Res 22:4880–4889CrossRef Girard L, Rodriguez-Canales J, Behrens C et al (2016) An expression signature as an aid to the histologic classification of non-small cell lung cancer. Clin Cancer Res 22:4880–4889CrossRef
10.
Zurück zum Zitat GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group et al (2017) Genetic effects on gene expression across human tissues. Nature 550:204–213CrossRef GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group et al (2017) Genetic effects on gene expression across human tissues. Nature 550:204–213CrossRef
11.
Zurück zum Zitat Hutter C, Zenklusen JC (2018) The cancer genome atlas: creating lasting value beyond its data. Cell 173:283–285CrossRef Hutter C, Zenklusen JC (2018) The cancer genome atlas: creating lasting value beyond its data. Cell 173:283–285CrossRef
12.
Zurück zum Zitat Kakrana A, Yang A, Anand D et al (2018) iSyTE 2.0: a database for expression-based gene discovery in the eye. Nucleic Acids Res 46:D875–D885CrossRef Kakrana A, Yang A, Anand D et al (2018) iSyTE 2.0: a database for expression-based gene discovery in the eye. Nucleic Acids Res 46:D875–D885CrossRef
13.
Zurück zum Zitat Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRef Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRef
14.
Zurück zum Zitat Lange C, Wolf J, Auw-Haedrich C et al (2020) Expression of the COVID-19 receptor ACE2 in the human conjunctiva. J Med Virol 92:2081–2086CrossRef Lange C, Wolf J, Auw-Haedrich C et al (2020) Expression of the COVID-19 receptor ACE2 in the human conjunctiva. J Med Virol 92:2081–2086CrossRef
15.
Zurück zum Zitat Lange CAK, Lehnert P, Boneva SK et al (2018) Increased expression of hypoxia-inducible factor‑1 alpha and its impact on transcriptional changes and prognosis in malignant tumours of the ocular adnexa. Eye (Lond) 32:1772–1782CrossRef Lange CAK, Lehnert P, Boneva SK et al (2018) Increased expression of hypoxia-inducible factor‑1 alpha and its impact on transcriptional changes and prognosis in malignant tumours of the ocular adnexa. Eye (Lond) 32:1772–1782CrossRef
16.
Zurück zum Zitat Martin G, Wolf J, Lapp T et al (2021) Viral S protein histochemistry reveals few potential SARS-CoV‑2 entry sites in human ocular tissues. Sci Rep 11:19140CrossRef Martin G, Wolf J, Lapp T et al (2021) Viral S protein histochemistry reveals few potential SARS-CoV‑2 entry sites in human ocular tissues. Sci Rep 11:19140CrossRef
17.
Zurück zum Zitat Mazloumi M, Vichitvejpaisal P, Dalvin LA et al (2020) Accuracy of the cancer genome atlas classification vs American joint committee on cancer classification for prediction of metastasis in patients with uveal melanoma. JAMA Ophthalmol 138:260–267CrossRef Mazloumi M, Vichitvejpaisal P, Dalvin LA et al (2020) Accuracy of the cancer genome atlas classification vs American joint committee on cancer classification for prediction of metastasis in patients with uveal melanoma. JAMA Ophthalmol 138:260–267CrossRef
18.
Zurück zum Zitat Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98CrossRef Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98CrossRef
19.
Zurück zum Zitat Pinelli M, Carissimo A, Cutillo L et al (2016) An atlas of gene expression and gene co-regulation in the human retina. Nucleic Acids Res 44:5773–5784CrossRef Pinelli M, Carissimo A, Cutillo L et al (2016) An atlas of gene expression and gene co-regulation in the human retina. Nucleic Acids Res 44:5773–5784CrossRef
21.
Zurück zum Zitat Robertson AG, Shih J, Yau C et al (2017) Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32:204–220.e15CrossRef Robertson AG, Shih J, Yau C et al (2017) Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32:204–220.e15CrossRef
22.
Zurück zum Zitat Schlecht A, Boneva S, Gruber M et al (2020a) Transcriptomic characterization of human choroidal neovascular membranes identifies calprotectin as a novel biomarker for patients with age-related macular degeneration. Am J Pathol 190:1632–1642CrossRef Schlecht A, Boneva S, Gruber M et al (2020a) Transcriptomic characterization of human choroidal neovascular membranes identifies calprotectin as a novel biomarker for patients with age-related macular degeneration. Am J Pathol 190:1632–1642CrossRef
23.
Zurück zum Zitat Schlecht A, Zhang P, Wolf J et al (2020b) Secreted phosphoprotein 1 expression in retinal mononuclear phagocytes links murine to human choroidal neovascularization. Front Cell Dev Biol 8:618598CrossRef Schlecht A, Zhang P, Wolf J et al (2020b) Secreted phosphoprotein 1 expression in retinal mononuclear phagocytes links murine to human choroidal neovascularization. Front Cell Dev Biol 8:618598CrossRef
24.
Zurück zum Zitat Schlunck G, Boneva S, Wolf U et al (2020) RNA sequencing of formalin-fixed and paraffin-embedded tissue as a complementary method in ophthalmopathology. Klin Monbl Augenheilkd 237:860–866CrossRef Schlunck G, Boneva S, Wolf U et al (2020) RNA sequencing of formalin-fixed and paraffin-embedded tissue as a complementary method in ophthalmopathology. Klin Monbl Augenheilkd 237:860–866CrossRef
26.
Zurück zum Zitat Swamy V, Mcgaughey D (2019) Eye in a disk: eyeintegration human pan-eye and body transcriptome database version 1.0. Invest Ophthalmol Vis Sci 60:3236–3246CrossRef Swamy V, Mcgaughey D (2019) Eye in a disk: eyeintegration human pan-eye and body transcriptome database version 1.0. Invest Ophthalmol Vis Sci 60:3236–3246CrossRef
27.
Zurück zum Zitat Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419CrossRef Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419CrossRef
29.
Zurück zum Zitat Voigt AP, Whitmore SS, Lessing ND et al (2020) Spectacle: an interactive resource for ocular single-cell RNA sequencing data analysis. Exp Eye Res 200:108204CrossRef Voigt AP, Whitmore SS, Lessing ND et al (2020) Spectacle: an interactive resource for ocular single-cell RNA sequencing data analysis. Exp Eye Res 200:108204CrossRef
30.
Zurück zum Zitat Wagner AH, Anand VN, Wang WH et al (2013) Exon-level expression profiling of ocular tissues. Exp Eye Res 111:105–111CrossRef Wagner AH, Anand VN, Wang WH et al (2013) Exon-level expression profiling of ocular tissues. Exp Eye Res 111:105–111CrossRef
32.
Zurück zum Zitat Wolf J, Auw-Haedrich C, Schlecht A et al (2020) Transcriptional characterization of conjunctival melanoma identifies the cellular tumor microenvironment and prognostic gene signatures. Sci Rep 10:17022CrossRef Wolf J, Auw-Haedrich C, Schlecht A et al (2020) Transcriptional characterization of conjunctival melanoma identifies the cellular tumor microenvironment and prognostic gene signatures. Sci Rep 10:17022CrossRef
33.
Zurück zum Zitat Wolf J, Boneva S, Schlecht A, Lapp T, Auw-Haedrich C, Lagrèze W, Agostini H, Reinhard T, Schlunck G, Lange C (2022) The Human Eye Transcriptome Atlas: A searchable comparative transcriptome database for healthy and diseased human eye tissue. Genomics 3:110286. https://doi.org/10.1016/j.ygeno.2022.110286CrossRef Wolf J, Boneva S, Schlecht A, Lapp T, Auw-Haedrich C, Lagrèze W, Agostini H, Reinhard T, Schlunck G, Lange C (2022) The Human Eye Transcriptome Atlas: A searchable comparative transcriptome database for healthy and diseased human eye tissue. Genomics 3:110286. https://​doi.​org/​10.​1016/​j.​ygeno.​2022.​110286CrossRef
Metadaten
Titel
Web-based gene expression analysis—paving the way to decode healthy and diseased ocular tissue
verfasst von
Julian Wolf
Thabo Lapp
Thomas Reinhard
Hansjürgen Agostini
Günther Schlunck
Clemens Lange
Publikationsdatum
13.09.2022
Verlag
Springer Medizin
Erschienen in
Die Ophthalmologie / Ausgabe Sonderheft 1/2023
Print ISSN: 2731-720X
Elektronische ISSN: 2731-7218
DOI
https://doi.org/10.1007/s00347-022-01721-4

Weitere Artikel der Sonderheft 1/2023

Die Ophthalmologie 1/2023 Zur Ausgabe

Leitlinien, Stellungnahmen und Empfehlungen

Erbliche Netzhaut‑, Aderhaut- und Sehbahnerkrankungen

Leitlinien, Stellungnahmen und Empfehlungen

Retinale arterielle Verschlüsse (RAV)

Leitlinien, Stellungnahmen und Empfehlungen

Virale anteriore Uveitis

Leitlinien, Stellungnahmen und Empfehlungen

Makulaforamen und vitreomakuläre Traktion

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Die überschießende Wundheilung in der filtrierenden Glaukomchirurgie ist ein zentraler Faktor für ein operatives Versagen. Nach der Einführung der Trabekulektomie in den 1960er-Jahren wurden viele Faktoren erkannt, die mit einer vermehrten …

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.