Skip to main content
Erschienen in: The Ultrasound Journal 1/2022

Open Access 01.12.2022 | Review

The impact of lung ultrasound on clinical-decision making across departments: a systematic review

verfasst von: Micah L. A. Heldeweg, Lian Vermue, Max Kant, Michelle Brouwer, Armand R. J. Girbes, Mark E. Haaksma, Leo M. A. Heunks, Amne Mousa, Jasper M. Smit, Thomas W. Smits, Frederique Paulus, Johannes C. F. Ket, Marcus J. Schultz, Pieter Roel Tuinman

Erschienen in: The Ultrasound Journal | Ausgabe 1/2022

Abstract

Background

Lung ultrasound has established itself as an accurate diagnostic tool in different clinical settings. However, its effects on clinical-decision making are insufficiently described. This systematic review aims to investigate the impact of lung ultrasound, exclusively or as part of an integrated thoracic ultrasound examination, on clinical-decision making in different departments, especially the emergency department (ED), intensive care unit (ICU), and general ward (GW).

Methods

This systematic review was registered at PROSPERO (CRD42021242977). PubMed, EMBASE, and Web of Science were searched for original studies reporting changes in clinical-decision making (e.g. diagnosis, management, or therapy) after using lung ultrasound. Inclusion criteria were a recorded change of management (in percentage of cases) and with a clinical presentation to the ED, ICU, or GW. Studies were excluded if examinations were beyond the scope of thoracic ultrasound or to guide procedures. Mean changes with range (%) in clinical-decision making were reported. Methodological data on lung ultrasound were also collected. Study quality was scored using the Newcastle–Ottawa scale.

Results

A total of 13 studies were included: five studies on the ED (546 patients), five studies on the ICU (504 patients), two studies on the GW (1150 patients), and one study across all three wards (41 patients). Lung ultrasound changed the diagnosis in mean 33% (15–44%) and 44% (34–58%) of patients in the ED and ICU, respectively. Lung ultrasound changed the management in mean 48% (20–80%), 42% (30–68%) and 48% (48–48%) of patients in the ED, in the ICU and in the GW, respectively. Changes in management were non-invasive in 92% and 51% of patients in the ED and ICU, respectively. Lung ultrasound methodology was heterogeneous across studies. Risk of bias was moderate to high in all studies.

Conclusions

Lung ultrasound, exclusively or as a part of thoracic ultrasound, has substantial impact on clinical-decision making by changing diagnosis and management in the EDs, ICUs, and GWs. The current evidence level and methodological heterogeneity underline the necessity for well-designed trials and standardization of methodology.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13089-021-00253-3.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ED
Emergency Department
GW
General ward
ICU
Intensive Care Unit

Background

Lung ultrasound is a rapidly growing point-of-care diagnostic and monitoring modality in emergency departments (EDs), intensive care units (ICUs), and general wards (GWs). It is an increasingly common addition to standard physical examination and has been included in many specialist training programs [13]. Lung ultrasound’s advantages are that it is non-invasive, easy to learn, and accurate in discriminating pulmonary pathology [46]. Moreover, integrating lung ultrasound with bedside cardiac and caval ultrasound expands its utility to comprehensively assess cardiopulmonary status [7]. Clinical use of lung ultrasound may therefore allow quicker arrival at correct diagnosis and management leading to improved patient outcomes.
Lung ultrasound’s prompt emergence is also accompanied with several knowledge gaps. Previous literature has addressed issues such as methodological heterogeneity and reproducibility [8, 9]. However, whether the implementation of lung ultrasound affects clinical-decision making remains largely unaddressed.
This systematic review investigates how often use of lung ultrasound, exclusively or as a part of thoracic ultrasound, leads to changes in clinical-decision making across departments, e.g. ED, ICU and GW.

Methods

This systematic review was registered at the International Prospective Register of Systematic Reviews (CRD42021242977). The Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed to safeguard transparent and complete reporting of our review.

Search strategy

A comprehensive search of available literature on impact of lung ultrasound on clinical-decision making was built with the help of a medical librarian. Medical subject headings, keywords, and synonyms pertaining to lung, ultrasound, decision making, and patient management were used to search PubMed (Medline) up to March 19th 2021, as well as Embase and Web of Science up to April 6th 2021 (Additional file 1).

Study selection and inclusion

Inclusion criteria for studies were: (i) Original research in the English language reporting on changes in clinical-decision making following lung ultrasound examination exclusively or as a part of thoracic ultrasound. Clinical-decision making was defined as either a clinician’s diagnosis, management, or therapy. At least a recorded change of management, the overarching term encompassing changes of therapy, changes of level of care, disposition, or consultations was required for inclusion; (ii) Patients in the ED, ICU (including medium care unit), or GW; (iii) General clinical presentations including hemodynamic or respiratory instability.
Exclusion criteria were: (i) Examinations beyond the scope of thoracic ultrasound (e.g. transcranial or abdominal); (ii) Ultrasound used solely for guiding procedures; (iii) Outpatient, prehospital, or rural patient presentations; (iv) Specific clinical presentations (e.g. only patients with pulmonary embolism). Title and abstract screening was conducted by two investigators (LV and MK) and conflicts were resolved with help of a third investigator (MLAH).

Data extraction

Two investigators (MLAH and LV) extracted the following data from each study: (i) population; (ii) diagnostic and/or monitoring protocol; (iii) reported clinical-decision making change(s). Changes in therapy were further subdivided into non-invasive (pharmacological, fluids, ventilator settings, physiotherapy) and invasive (surgical procedure, start or stop mechanical ventilation, invasive diagnostic, or dialysis); (iv) methodological aspects (probe, lung ultrasound scoring system, training, interrater agreement).

Data synthesis

Studies were categorized according to setting (ED, ICU, or GW). Depending on the availability of data, the impact on clinical-decision was shown as a number and percentage (%) of change in diagnosis, change in management, and change in therapy. Meta-analysis was considered inappropriate due to anticipated heterogeneity and lack of inferential statistics. As data is restricted to a limited number of studies, total changes across studies were presented as mean with reported range to facilitate interpretation. Other reported metrics on clinical-decision making were textually presented when appropriate. Although multiple changes of management can occur in one examination, when possible, the results were presented as relative number of examinations leading to changes to enable the calculation of a percentage.
Lung ultrasound’s major paradigm shift occurred after a landmark April 2008 study [10]. Studies before this date had significantly different lung ultrasound methodologies. These studies primarily relied on limited lung ultrasound protocols, stricter patient selection, and external sonographers further removed from clinical decisions. These studies were not included in the aggregate, but discussed separately.

Quality assessment

The Newcastle–Ottawa scale for cohort studies was used to assess risk of bias. This quality assessment tool classifies an observational study’s risk of bias with 0–9 stars, which was further subdivided as high (0–3 stars), moderate (4–6 stars), or low (7–9 stars) quality [11].

Results

A total of 8563 records were identified through the search in PubMed (53%), Web of Science (10%), and Embase (37%). An additional six records were identified by screening reference lists. After removal of duplicates and screening using inclusion and exclusion criteria, 50 records were read in full. Ultimately, 13 studies with a total of 2142 patients were included for data extraction (Fig. 1).
All 13 studies had an observational design. Five studies were performed in the ED, five at the ICU, two at the GW, and one at all three different departments. In the 10 studies performed after 2008 lung ultrasound was effectuated by the bedside clinician or investigators. In the three studies performed before April 2008, lung ultrasound was performed by independent radiologists or technicians. Five studies only investigated lung ultrasound, four included cardiac ultrasound, one included caval ultrasound, and one combined all thoracic ultrasound modalities.

Effects of ultrasound on clinical-decision making in ED patients

Outcomes of the five studies performed in the ED are presented in Table 1. Four studies investigated patients with dyspnea [1215]. One study, performed in 2001, investigated patients with “acute chest symptoms” [16].
Table 1
Effect of ultrasound on clinical-decision making reported by ED studies
Study
Year
Patients (n), symptom
Ultrasound
Diagnosis change
Management change
Therapy change
Type of therapy changes
House
2020
280, dyspnea
Lung
124 (44.3%)
150 (53.6%)
125 (44.6%)
Invasive 9/125
n-Invasive 116/125
Shah
2016
117, dyspnea
Lung + cardiac
18 (15.4%)
23 (19.6%)
23 (19.6%)
Invasive 1/23
n-Invasive 22/23
Russell
2015
99, dyspnea
Lung + cardiac + caval
17 (17%)
47 (47%)
42 (42%)
Invasive 2/42
n-Invasive 40/42
Goffi
2013
50, dyspnea
Lung
22 (44%)
40 (80%)
35 (70%)
Invasive 6/35
n-Invasive 29/35
Total
 
546
 
181 (33.2%)
260 (47.6%)
225 (41.2%)
Invasive 18/225
n-invasive 207/225
Yuan
2001
78 acute chest symptoms
Lung + cardiac
52 (66.7%)
35 (44.9%)
34 (43.6%)
Invasive 17/34
n-Invasive 17/34
TOTAL referred to the compilation of studies published after April 2008; ED emergency department
Changes in diagnosis, management, and therapy occurred in 33.2% (15.4–44%), 47.6% (19.6–80%), and 41.2% (19.6–70%), respectively. Of therapy changes 92% were non-invasive. Two studies included patients < 18 years. One reported that changes in clinical impression (13.7%) and changes in diagnosis (3.4%) were less frequent in the pediatric population compared to adults (24.8% of total population, mean age 3.4 years), whilst the other study did not specify any age-related characteristics [12, 13].

Effects of ultrasound on clinical-decision making in ICU patients

Outcomes of five studies performed in the ICU are presented in Table 2. Two studies evaluated patients with respiratory failure and two studies evaluated mechanically ventilated patients [1720]. One ICU study, performed in 2008, evaluated the impact of “chest sonography” on all ICU patients during five months of on-demand chest radiography and five months of daily routine chest radiography [21].
Table 2
Effect of ultrasound on clinical-decision making reported by ICU studies
Study
Year
Patients (n), symptom
Ultrasound
Diagnosis change
Management change
Type of changes
Barman
2020
108, respiratory failure
Lung + cardiac
40 (37%)
39 (36%)
Invasive 44/69
n-Invasive 25/69
Haji
2018
93, unspecified
Lung + cardiac
53 (58%)
60 (68%)
Invasive 2/60
n-Invasive 58/60
Wallbridge
2017
50, respiratory failure
Lung + caval
17 (34%)
15 (30%)
Invasive 1/15
n-Invasive 14/15
Xirouchaki
2014
253, MV adults
Lung
N/A
119 (47%)
Invasive 81/119
n-Invasive 38/119
Total
 
504
 
110 (43.8%)
233 (42.2%)
Invasive 128/263
n-Invasive 135/263
Kröner
2008
36 adults
Lung
16 of 43 (37.2%)
18 of 48 (38%)
N/A
MV mechanically ventilated; N/A not available; TOTAL referred to the compilation of studies published after April 2008; ICU intensive care unit
Changes in diagnosis and management occurred in 43.8% (34—58%) and 42.2% (30–68%), respectively. Of therapy changes 51% were non-invasive. Rather than reporting changes in diagnosis, one study reported the net reclassification index (85.6%) as a metric for the impact of lung ultrasound on decision making [20]. According to one of the studies, patients who had multiple initial clinical diagnoses were more likely to have a change in management following ultrasound scanning (8/16 patients, compared to 7/34 patients with a single diagnosis, p = 0.034) [19]. None of the ICU studies differentiated between management or therapy changes.

Effects of ultrasound on clinical-decision making in GW patients

Two studies were performed on the GW with a mean change of management in 47.7% of examinations. Both studies did not report change in diagnosis or types of changes. On the Internal Medicine Ward, lung ultrasound led to a change in management in 25 out of 52 (48.0%) examinations [22]. Pulmonologists used lung ultrasound across different wards to influence clinical-decision making, including treatment, in 548 (47.7%) out of 1150 examinations [23].
A study from 1992, showed that chest sonographers’ examinations on ED (n = 6), ICU (n = 19), and GW (n = 16) patients, assisted diagnosis in 27 (66%) patients and changed management in 25 (60.9%) of 41 patients [24].

Lung ultrasound methodology

Table 3 shows a large variance in lung ultrasound methodology across included studies. The most frequently used lung ultrasound protocol was 8-zone with a convex probe oriented perpendicular to the ribs.
Table 3
Lung ultrasound methodology of included studies
Study
Zones
Orientation
B-line appraisal
Probe
Examiner
Interrater agreement
ED
 House 2020
10
Perpendicular
 ≥ 2 positive regions with ≥ 3 B-lines
Convex
Clinician + trained
Experts: 0.9
Clinician: 0.8
 Shah 2016
18
Perpendicular
 ≥ 2 positive regions with ≥ 3 B-lines
Phased
Clinician + trained
LVEF κ:0.98
 Russell 2015
8
Perpendicular
 ≥ 2 positive regions with ≥ 4 B-lines
Convex
Investigator + trained
Investigators κ: 0.82
 Goffi 2013
8
Perpendicular
 ≥ 2 positive regions with ≥ 3 B-lines
Convex
Investigator
N/A
 Yuan 2001
N/A
N/A
N/A
Linear + convex + phased
Technician
 + trained
N/A
ICU
 Barman 2020
8
Parallel
 ≥ 2 positive regions with ≥ 3 B-lines
Linear + convex
Investigator
N/A
 Haji
2018
12
Perpendicular
 ≥ 2 positive regions with ≥ 3 B-lines
N/A
Investigator + experience
κ:0.69
 Wallbridge 2017
N/A
Parallel
 ≥ 2 zones with B-lines: diffuse
Convex + linear
Investigator + certified
N/A
 Xirouchaki 2013
12
Perpendicular
 > 1 B-line in zone
Convex
Investigator + experience
N/A
 Kröner 2008
N/A
N/A
N/A
N/A
Technician
N/A
GW
 Mozzini 2016
28/8/2
Perpendicular
 ≥ 2 positive regions with ≥ 3 B-lines
Linear + convex + phased
Clinicians + trained
Various
 Sferrazza papa 2016
8
Perpendicular
 ≥ 2 positive regions with ≥ 3 B-lines
Convex + linear
Clinicians + trained
N/A
 Yu 1992
N/A
N/A
N/A
Convex + linear + phased
Technician
N/A
κ kappa degree of agreement; N/A not available. The probes were grouped in major probe categories (e.g. phased, convex, linear) although their specific frequency range varied. The examiner was described as investigator, technician, or clinician. Training of examiners were grouped into experienced, trained and certified although the respective definition of the former varied substantially

Quality assessment

Table 4 shows the quality assessment. Four studies exhibit a high risk of bias, and nine studies a moderate risk of bias (4–6). None of the studies offer comparable control arms for clinical-decision making.
Table 4
Quality assessment of studies for this systematic review’s outcome of interest using the Newcastle–Ottawa scale for cohort studies
 
Selection
Comparability
Outcomes
Total
Representativeness
Selection of non-exposed
Ascertainment of exposure
Outcome not present at start of study
Comparability of cohorts on the basis of the design of analysis
Assessment of outcome
Sufficient follow up time
Adequacy of follow up of cohorts
House 2020
☆☆
6/9
Shah 2016
☆☆
5/9
Russel 2015
☆☆
6/9
Goffi 2013
☆☆
4/9
Yuan 2001
☆☆
4/9
Barman 2020
☆☆
3/9
Haji 2018
☆☆
6/9
Wallbridge 2017
☆☆
4/9
Xirouchaki 2013
☆☆
3/9
Kröner 2008
☆☆
5/9
Mozzini 2016
☆☆
3/9
Sferrazza 2016
☆☆
5/9
Yu 1992
☆☆
3/9
Empty stars reflects lack of sufficient quality on the respective domains. Full starts reflect sufficient quality on respective domains where total represents high (0–3 stars), moderate (4–6 stars), or low (7–9 stars) risk of bias

Discussion

The main findings of this systematic review are: (i) Lung ultrasound resulted in a large proportion of diagnosis changes in the ED and ICU (34% and 44% of examinations, respectively); (ii) Lung ultrasound resulted in substantial management changes in the ED, ICU, and GW (48%, 42%, and 48% of examinations, respectively); (iii) On the ED and ICU therapy changes were most frequently non-invasive (92% and 51% respectively); (iv) Lung ultrasound methodology was heterogeneous across studies; v. Moderate to high risk of bias was present across all studies.
This study shows that bedside lung ultrasound is frequently a decisive tool in different clinical settings. This is an important finding: changes to physician behavior and subsequent modification of patient care might result in improvement in patient-centered outcomes. Moreover, even when no changes are effectuated, the confirmation of clinical impression could prevent uptake of further, costly or more invasive diagnostic and monitoring modalities. Additionally, the outcomes of the included studies were absolute (change versus no change), but ultrasound may also induce modification of prior likelihood. Resulting elimination of uncertainty may prevent delays of indicated care and, in some cases, patient harm [25, 26].
This study found that the majority of ultrasound-induced changes were classified as non-invasive as opposed to invasive. This classification is limited in evaluating true effects of changes, both in diagnosis and management, on patient-centered outcomes. For example, a non-invasive change may be to abstain from increasing furosemide dose, but another may be to start rapid fluid resuscitation. At the same time, small changes in management should not be underestimated, as, for example, optimization of volume status may result in faster liberation from mechanical ventilation [27].
Consistent with previous literature, the majority of studies integrated lung ultrasound with other thoracic ultrasound modalities. This is a reasonable approach as pathologies encountered upon thoracic ultrasound are often (patho)physiologically linked. Findings on lung ultrasound may support, modify, or moderate cardiac and caval ultrasound’s findings and vice versa. Moreover, previous research also showed that an integrated thoracic ultrasound approach performs better than its individual components [28]. Other studies have expanded bedside ultrasound beyond thorax to include transcranial and abdominal ultrasound and found even higher impact on clinical management (60% and 69%, respectively) [29, 30]. Evidently, point-of-care ultrasound modalities, combined or separately, have a substantial impact on clinical-decision making.
The current study examines the use of lung ultrasound in ED, ICU, and GW; three hospital departments where point-of-care ultrasound is very relevant. Results across these hospital settings were similar. Interestingly, the use of point-of-care ultrasound has expanded beyond hospital medicine. One study showed that the introduction of point-of-care ultrasound in general practice alters the diagnostic process and results in changes of diagnosis and management in half of patients [31]. Similarly, prehospital (and rural) studies employing a wide variety of POCUS examinations found a significant benefit that can dramatically alter disposition and treatment (50% of patients) and correlated well with in-hospital diagnostic results [32, 33].
The methodology and quality assessment tables highlight weaknesses in current lung ultrasound research. Methodological inconsistencies are frequent amongst lung ultrasound investigations, may impact findings, and limit clinical reproducibility or generalizability [8, 9, 34]. The lack of comparator for any of the studies may be intrinsic to the selected outcome, but emphasizes the need for controlled and well-designed studies to study the effect of lung ultrasound beyond clinician behavior: patient-centered and hospital level outcomes. Even excellent diagnostic tools do not necessarily lead to improved patient-centered outcomes [35]. Similarly, wrongful interpretation of ultrasound accompanied by unwarranted change of management may have undesired effects. Currently, several trials are either underway or recently published that may potentially provide higher quality evidence [3638].
This is the first study that systematically and exhaustively, including a total of 13 studies and 2142 patients, describes the impact of lung ultrasound on clinical-decision making. The search strategy was extensive (including three databases) to enhance identification of relevant studies. Strict methodology was used, including inclusion and exclusion criteria to increase homogeneity across studies, a recurring issue in ultrasound literature.
A limitation to the current study is that the outcome of interest, physician behavior, is not necessarily associated with improvement of patient-centered outcomes. Assessment of the latter would require randomized or blinded studies to avoid confounding factors. Moreover, ultrasound-driven intended changes in physician behavior may not necessarily be executed. Feasibility studies are required to assess actual management effectuation. Furthermore, assessment of publication bias, e.g. by a funnel-plot, was not done. Lastly, it is possible that not all studies were identified due to the requirement of English language.

Conclusions

Lung ultrasound, exclusively or as a part of thoracic ultrasound, has a major impact on clinical-decision making by changing diagnosis management, and therapy in different clinical settings. However, the current evidence level and methodological heterogeneity underlines the invariable necessity for well-designed trials and standardization of ultrasound methodology.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing (financial or non-financial) interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Touw HRW, Tuinman PR, Gelissen HPMM et al (2015) Lung ultrasound: routine practice for the next generation of internists. Neth J Med 73:100–107PubMed Touw HRW, Tuinman PR, Gelissen HPMM et al (2015) Lung ultrasound: routine practice for the next generation of internists. Neth J Med 73:100–107PubMed
2.
Zurück zum Zitat Solomon SD, Saldana F (2014) Point-of-care ultrasound in medical education—stop listening and look. N Engl J Med 370:1083–1085CrossRef Solomon SD, Saldana F (2014) Point-of-care ultrasound in medical education—stop listening and look. N Engl J Med 370:1083–1085CrossRef
3.
Zurück zum Zitat Arts L, Lim EHT, van de Ven PM et al (2020) The diagnostic accuracy of lung auscultation in adult patients with acute pulmonary pathologies: a meta-analysis. Sci Rep 10:1–11CrossRef Arts L, Lim EHT, van de Ven PM et al (2020) The diagnostic accuracy of lung auscultation in adult patients with acute pulmonary pathologies: a meta-analysis. Sci Rep 10:1–11CrossRef
4.
Zurück zum Zitat Winkler MH, Touw HR, van de Ven PM et al (2018) Diagnostic accuracy of chest radiograph, and when concomitantly studied lung ultrasound, in critically ill patients with respiratory symptoms: a systematic review and meta-analysis. Crit Care Med 46:e707–e714CrossRef Winkler MH, Touw HR, van de Ven PM et al (2018) Diagnostic accuracy of chest radiograph, and when concomitantly studied lung ultrasound, in critically ill patients with respiratory symptoms: a systematic review and meta-analysis. Crit Care Med 46:e707–e714CrossRef
5.
Zurück zum Zitat Nooitgedacht J, Haaksma M, Touw HRW, Tuinman PR (2018) Perioperative care with an ultrasound device is as Michael Jordan with Scotty Pippen: At its best! J Thorac Dis 10:6436–6441CrossRef Nooitgedacht J, Haaksma M, Touw HRW, Tuinman PR (2018) Perioperative care with an ultrasound device is as Michael Jordan with Scotty Pippen: At its best! J Thorac Dis 10:6436–6441CrossRef
6.
Zurück zum Zitat Orso D, Guglielmo N, Copetti R (2018) Lung ultrasound in diagnosing pneumonia in the emergency department: a systematic review and meta-analysis. Eur J Emerg Med 25:312–321CrossRef Orso D, Guglielmo N, Copetti R (2018) Lung ultrasound in diagnosing pneumonia in the emergency department: a systematic review and meta-analysis. Eur J Emerg Med 25:312–321CrossRef
7.
Zurück zum Zitat Mayo PH, Copetti R, Feller-Kopman D et al (2019) Thoracic ultrasonography: a narrative review. Intensive Care Med 45:1200–1211CrossRef Mayo PH, Copetti R, Feller-Kopman D et al (2019) Thoracic ultrasonography: a narrative review. Intensive Care Med 45:1200–1211CrossRef
8.
Zurück zum Zitat Neuteboom OB, Heldeweg ML, Pisani L et al (2020) Assessing extravascular lung water in critically ill patients using lung ultrasound: a systematic review on methodological aspects in diagnostic accuracy studies. Ultrasound Med Biol 46(7):1557–1564CrossRef Neuteboom OB, Heldeweg ML, Pisani L et al (2020) Assessing extravascular lung water in critically ill patients using lung ultrasound: a systematic review on methodological aspects in diagnostic accuracy studies. Ultrasound Med Biol 46(7):1557–1564CrossRef
9.
Zurück zum Zitat Haaksma ME, Smit JM, Heldeweg MLA et al (2020) Lung ultrasound and B-lines: B careful! Intensive Care Med 46(3):544–545CrossRef Haaksma ME, Smit JM, Heldeweg MLA et al (2020) Lung ultrasound and B-lines: B careful! Intensive Care Med 46(3):544–545CrossRef
10.
Zurück zum Zitat Lichtenstein DA, Mezière GA (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure the BLUE protocol. Chest 134:117–125CrossRef Lichtenstein DA, Mezière GA (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure the BLUE protocol. Chest 134:117–125CrossRef
12.
Zurück zum Zitat House DR, Amatya Y, Nti B, Russell FM (2020) Impact of bedside lung ultrasound on physician clinical decision-making in an emergency department in Nepal. Int J Emerg Med 13:14CrossRef House DR, Amatya Y, Nti B, Russell FM (2020) Impact of bedside lung ultrasound on physician clinical decision-making in an emergency department in Nepal. Int J Emerg Med 13:14CrossRef
13.
Zurück zum Zitat Shah SP, Shah SP, Fils-Aime R et al (2016) Focused cardiopulmonary ultrasound for assessment of dyspnea in a resource-limited setting. Crit Ultrasound J 8:7CrossRef Shah SP, Shah SP, Fils-Aime R et al (2016) Focused cardiopulmonary ultrasound for assessment of dyspnea in a resource-limited setting. Crit Ultrasound J 8:7CrossRef
14.
Zurück zum Zitat Russell FM, Ehrman RR, Cosby K et al (2015) Diagnosing acute heart failure in patients with undifferentiated dyspnea: a lung and cardiac ultrasound (LuCUS) protocol. Acad Emerg Med 22:182–191CrossRef Russell FM, Ehrman RR, Cosby K et al (2015) Diagnosing acute heart failure in patients with undifferentiated dyspnea: a lung and cardiac ultrasound (LuCUS) protocol. Acad Emerg Med 22:182–191CrossRef
15.
Zurück zum Zitat Goffi A, Pivetta E, Lupia E et al (2013) Has lung ultrasound an impact on the management of patients with acute dyspnea in the emergency department? Crit Care 17(4):R180CrossRef Goffi A, Pivetta E, Lupia E et al (2013) Has lung ultrasound an impact on the management of patients with acute dyspnea in the emergency department? Crit Care 17(4):R180CrossRef
16.
Zurück zum Zitat Yuan A, Yang PC, Chang YC et al (2001) Value of chest sonography in the diagnosis and management of acute chest disease. J Clin Ultrasound 29:78–86CrossRef Yuan A, Yang PC, Chang YC et al (2001) Value of chest sonography in the diagnosis and management of acute chest disease. J Clin Ultrasound 29:78–86CrossRef
17.
Zurück zum Zitat Agarwal A, Barman B, Parihar A et al (2020) Impact of bedside combined cardiopulmonary ultrasound on etiological diagnosis and treatment of acute respiratory failure in critically ill patients. Indian J Crit Care Med 24:1062–1070CrossRef Agarwal A, Barman B, Parihar A et al (2020) Impact of bedside combined cardiopulmonary ultrasound on etiological diagnosis and treatment of acute respiratory failure in critically ill patients. Indian J Crit Care Med 24:1062–1070CrossRef
18.
Zurück zum Zitat Haji K, Haji D, Canty DJ et al (2018) The feasibility and impact of routine combined limited transthoracic echocardiography and lung ultrasound on diagnosis and management of patients admitted to ICU: a prospective observational study. J Cardiothorac Vasc Anesth 32:354–360CrossRef Haji K, Haji D, Canty DJ et al (2018) The feasibility and impact of routine combined limited transthoracic echocardiography and lung ultrasound on diagnosis and management of patients admitted to ICU: a prospective observational study. J Cardiothorac Vasc Anesth 32:354–360CrossRef
19.
Zurück zum Zitat Wallbridge PD, Joosten SA, Hannan LM et al (2017) A prospective cohort study of thoracic ultrasound in acute respiratory failure: the C 3 PO protocol. JRSM Open 8:205427041769505CrossRef Wallbridge PD, Joosten SA, Hannan LM et al (2017) A prospective cohort study of thoracic ultrasound in acute respiratory failure: the C 3 PO protocol. JRSM Open 8:205427041769505CrossRef
20.
Zurück zum Zitat Xirouchaki N, Kondili E, Prinianakis G et al (2014) Impact of lung ultrasound on clinical decision making in critically ill patients. Intensive Care Med 40:57–65CrossRef Xirouchaki N, Kondili E, Prinianakis G et al (2014) Impact of lung ultrasound on clinical decision making in critically ill patients. Intensive Care Med 40:57–65CrossRef
21.
Zurück zum Zitat Kröner A, Binnekade JM, Graat ME et al (2008) On-demand rather than daily-routine chest radiography prescription may change neither the number nor the impact of chest computed tomography and ultrasound studies in a multidisciplinary intensive care unit. Anesthesiology 108:40–45CrossRef Kröner A, Binnekade JM, Graat ME et al (2008) On-demand rather than daily-routine chest radiography prescription may change neither the number nor the impact of chest computed tomography and ultrasound studies in a multidisciplinary intensive care unit. Anesthesiology 108:40–45CrossRef
22.
Zurück zum Zitat Mozzini C, Di Dio PM, Pesce G et al (2018) Lung ultrasound in internal medicine efficiently drives the management of patients with heart failure and speeds up the discharge time. Intern Emerg Med 13:27–33CrossRef Mozzini C, Di Dio PM, Pesce G et al (2018) Lung ultrasound in internal medicine efficiently drives the management of patients with heart failure and speeds up the discharge time. Intern Emerg Med 13:27–33CrossRef
23.
Zurück zum Zitat Sferrazza Papa GF, Mondoni M, Volpicelli G et al (2017) Point-of-care lung sonography: an audit of 1150 examinations. J Ultrasound Med 36:1687–1692CrossRef Sferrazza Papa GF, Mondoni M, Volpicelli G et al (2017) Point-of-care lung sonography: an audit of 1150 examinations. J Ultrasound Med 36:1687–1692CrossRef
24.
Zurück zum Zitat Yu CJ, Yang PC, Chang DB, Luh KT (1992) Diagnostic and therapeutic use of chest sonography: value in critically ill patients. Am J Roentgenol 159:695–701CrossRef Yu CJ, Yang PC, Chang DB, Luh KT (1992) Diagnostic and therapeutic use of chest sonography: value in critically ill patients. Am J Roentgenol 159:695–701CrossRef
25.
Zurück zum Zitat Nakao S, Vaillancourt C, Taljaard M et al (2020) Evaluating the impact of point-of-care ultrasonography on patients with suspected acute heart failure or chronic obstructive pulmonary disease exacerbation in the emergency department: a prospective observational study. Can J Emerg Med 22:342–349CrossRef Nakao S, Vaillancourt C, Taljaard M et al (2020) Evaluating the impact of point-of-care ultrasonography on patients with suspected acute heart failure or chronic obstructive pulmonary disease exacerbation in the emergency department: a prospective observational study. Can J Emerg Med 22:342–349CrossRef
26.
Zurück zum Zitat Koh Y, Chua MT, Ho WH et al (2018) Assessment of dyspneic patients in the emergency department using point-of-care lung and cardiac ultrasonography—a prospective observational study. J Thorac Dis 10:6221–6229CrossRef Koh Y, Chua MT, Ho WH et al (2018) Assessment of dyspneic patients in the emergency department using point-of-care lung and cardiac ultrasonography—a prospective observational study. J Thorac Dis 10:6221–6229CrossRef
27.
Zurück zum Zitat Silversides JA, Major E, Ferguson AJ et al (2017) Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med 43:155–170CrossRef Silversides JA, Major E, Ferguson AJ et al (2017) Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med 43:155–170CrossRef
28.
Zurück zum Zitat Bataille B, Riu B, Ferre F et al (2014) Integrated use of bedside lung ultrasound and echocardiography in acute respiratory failure: a prospective observational study in ICU. Chest 146:1586–1593CrossRef Bataille B, Riu B, Ferre F et al (2014) Integrated use of bedside lung ultrasound and echocardiography in acute respiratory failure: a prospective observational study in ICU. Chest 146:1586–1593CrossRef
29.
Zurück zum Zitat Pontet J, Yic C, Díaz-Gómez JL et al (2019) Impact of an ultrasound-driven diagnostic protocol at early intensive-care stay: a randomized-controlled trial. Ultrasound J 11(1):24CrossRef Pontet J, Yic C, Díaz-Gómez JL et al (2019) Impact of an ultrasound-driven diagnostic protocol at early intensive-care stay: a randomized-controlled trial. Ultrasound J 11(1):24CrossRef
30.
Zurück zum Zitat Zieleskiewicz L, Muller L, Lakhal K et al (2015) Point-of-care ultrasound in intensive care units: assessment of 1073 procedures in a multicentric, prospective, observational study. Intensive Care Med 41:1638–1647CrossRef Zieleskiewicz L, Muller L, Lakhal K et al (2015) Point-of-care ultrasound in intensive care units: assessment of 1073 procedures in a multicentric, prospective, observational study. Intensive Care Med 41:1638–1647CrossRef
31.
Zurück zum Zitat Aakjær Andersen C, Brodersen J, Davidsen AS et al (2020) Use and impact of point-of-care ultrasonography in general practice: a prospective observational study. BMJ Open 10:e037664CrossRef Aakjær Andersen C, Brodersen J, Davidsen AS et al (2020) Use and impact of point-of-care ultrasonography in general practice: a prospective observational study. BMJ Open 10:e037664CrossRef
32.
Zurück zum Zitat Blaivas M, Kuhn W, Reynolds B, Brannam L (2005) Change in differential diagnosis and patient management with the use of portable ultrasound in a remote setting. Wilderness Environ Med 16:38–41CrossRef Blaivas M, Kuhn W, Reynolds B, Brannam L (2005) Change in differential diagnosis and patient management with the use of portable ultrasound in a remote setting. Wilderness Environ Med 16:38–41CrossRef
33.
Zurück zum Zitat Scharonow M, Weilbach C (2018) Prehospital point-of-care emergency ultrasound: a cohort study. Scand J Trauma Resusc Emerg Med 26(1):49CrossRef Scharonow M, Weilbach C (2018) Prehospital point-of-care emergency ultrasound: a cohort study. Scand J Trauma Resusc Emerg Med 26(1):49CrossRef
34.
Zurück zum Zitat Heldeweg MLA, Jagesar AR, Haaksma ME et al (2021) Effects of lung ultrasonography-guided management on cumulative fluid balance and other clinical outcomes: a systematic review. Ultrasound Med Biol 47:1163–1171CrossRef Heldeweg MLA, Jagesar AR, Haaksma ME et al (2021) Effects of lung ultrasonography-guided management on cumulative fluid balance and other clinical outcomes: a systematic review. Ultrasound Med Biol 47:1163–1171CrossRef
35.
Zurück zum Zitat Wheeler AP, Bernard GR, Thompson BT et al (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224CrossRef Wheeler AP, Bernard GR, Thompson BT et al (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224CrossRef
36.
Zurück zum Zitat Bailón MM, Rodrigo JMC, Lorenzo-Villalba N et al (2019) Effect of a therapeutic strategy guided by lung ultrasound on 6-month outcomes in patients with heart failure: Randomized, Multicenter Trial (EPICC Study). Cardiovasc Drugs Ther 33:453–459CrossRef Bailón MM, Rodrigo JMC, Lorenzo-Villalba N et al (2019) Effect of a therapeutic strategy guided by lung ultrasound on 6-month outcomes in patients with heart failure: Randomized, Multicenter Trial (EPICC Study). Cardiovasc Drugs Ther 33:453–459CrossRef
37.
Zurück zum Zitat Pang PS, Russell FM, Ehrman R et al (2021) Lung ultrasound-guided emergency department management of acute heart failure (BLUSHED-AHF): a Randomized Controlled Pilot Trial. JACC Heart Fail S2213–1779(21):00232–00238 Pang PS, Russell FM, Ehrman R et al (2021) Lung ultrasound-guided emergency department management of acute heart failure (BLUSHED-AHF): a Randomized Controlled Pilot Trial. JACC Heart Fail S2213–1779(21):00232–00238
38.
Zurück zum Zitat Rusu DM, Siriopol I, Grigoras I et al (2019) Lung ultrasound guided fluid management protocol for the critically ill patient: study protocol for a multi-centre randomized controlled trial. Trials 20:236CrossRef Rusu DM, Siriopol I, Grigoras I et al (2019) Lung ultrasound guided fluid management protocol for the critically ill patient: study protocol for a multi-centre randomized controlled trial. Trials 20:236CrossRef
Metadaten
Titel
The impact of lung ultrasound on clinical-decision making across departments: a systematic review
verfasst von
Micah L. A. Heldeweg
Lian Vermue
Max Kant
Michelle Brouwer
Armand R. J. Girbes
Mark E. Haaksma
Leo M. A. Heunks
Amne Mousa
Jasper M. Smit
Thomas W. Smits
Frederique Paulus
Johannes C. F. Ket
Marcus J. Schultz
Pieter Roel Tuinman
Publikationsdatum
01.12.2022
Verlag
Springer International Publishing
Erschienen in
The Ultrasound Journal / Ausgabe 1/2022
Print ISSN: 2036-3176
Elektronische ISSN: 2524-8987
DOI
https://doi.org/10.1186/s13089-021-00253-3

Weitere Artikel der Ausgabe 1/2022

The Ultrasound Journal 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.