Skip to main content
Erschienen in: Skeletal Radiology 3/2024

16.08.2023 | Scientific Article

Systematic review of artificial intelligence development and evaluation for MRI diagnosis of knee ligament or meniscus tears

verfasst von: Samantha M. Santomartino, Justin Kung, Paul H. Yi

Erschienen in: Skeletal Radiology | Ausgabe 3/2024

Einloggen, um Zugang zu erhalten

Abstract

Objective

The purpose of this systematic review was to summarize the results of original research studies evaluating the characteristics and performance of deep learning models for detection of knee ligament and meniscus tears on MRI.

Materials and Methods

We searched PubMed for studies published as of February 2, 2022 for original studies evaluating development and evaluation of deep learning models for MRI diagnosis of knee ligament or meniscus tears. We summarized study details according to multiple criteria including baseline article details, model creation, deep learning details, and model evaluation.

Results

19 studies were included with radiology departments leading the publications in deep learning development and implementation for detecting knee injuries via MRI. Among the studies, there was a lack of standard reporting and inconsistently described development details. However, all included studies reported consistently high model performance that significantly supplemented human reader performance.

Conclusion

From our review, we found radiology departments have been leading deep learning development for injury detection on knee MRIs. Although studies inconsistently described DL model development details, all reported high model performance, indicating great promise for DL in knee MRI analysis.
Literatur
1.
Zurück zum Zitat Benjaminse A, Gokeler A, van der Schans CP. Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther. 2006;36:267–88.CrossRefPubMed Benjaminse A, Gokeler A, van der Schans CP. Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther. 2006;36:267–88.CrossRefPubMed
2.
Zurück zum Zitat Mulligan EP, Harwell JL, Robertson WJ. Reliability and diagnostic accuracy of the Lachman test performed in a prone position. J Orthop Sports Phys Ther. 2011;41:749–57.CrossRefPubMed Mulligan EP, Harwell JL, Robertson WJ. Reliability and diagnostic accuracy of the Lachman test performed in a prone position. J Orthop Sports Phys Ther. 2011;41:749–57.CrossRefPubMed
3.
Zurück zum Zitat Rosenkrantz AB, Hughes DR, Duszak R. The U.S. Radiologist Workforce: An Analysis of Temporal and Geographic Variation by Using Large National Datasets. Radiology. 2016;279:175–84.CrossRefPubMed Rosenkrantz AB, Hughes DR, Duszak R. The U.S. Radiologist Workforce: An Analysis of Temporal and Geographic Variation by Using Large National Datasets. Radiology. 2016;279:175–84.CrossRefPubMed
4.
Zurück zum Zitat Mollura DJ, Culp MP, Pollack E, Battino G, Scheel JR, Mango VL, et al. Artificial Intelligence in Low- and Middle-Income Countries: Innovating Global Health Radiology. Radiology. 2020;297:513–20.CrossRefPubMed Mollura DJ, Culp MP, Pollack E, Battino G, Scheel JR, Mango VL, et al. Artificial Intelligence in Low- and Middle-Income Countries: Innovating Global Health Radiology. Radiology. 2020;297:513–20.CrossRefPubMed
5.
Zurück zum Zitat Kunze KN, Rossi DM, White GM, Karhade AV, Deng J, Williams BT, et al. Diagnostic Performance of Artificial Intelligence for Detection of Anterior Cruciate Ligament and Meniscus Tears: A Systematic Review. Arthroscopy: J Arthrosc Relat Surg. 2021;37:771–81.CrossRef Kunze KN, Rossi DM, White GM, Karhade AV, Deng J, Williams BT, et al. Diagnostic Performance of Artificial Intelligence for Detection of Anterior Cruciate Ligament and Meniscus Tears: A Systematic Review. Arthroscopy: J Arthrosc Relat Surg. 2021;37:771–81.CrossRef
6.
Zurück zum Zitat Langerhuizen DWG, Janssen SJ, Mallee WH, van den Bekerom MPJ, Ring D, Kerkhoffs GMMJ, et al. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review. Clin Orthop Relat Res. 2019;477:2482–91.CrossRefPubMedPubMedCentral Langerhuizen DWG, Janssen SJ, Mallee WH, van den Bekerom MPJ, Ring D, Kerkhoffs GMMJ, et al. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review. Clin Orthop Relat Res. 2019;477:2482–91.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Guermazi A, Tannoury C, Kompel AJ, Murakami AM, Ducarouge A, Gillibert A, et al. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology. 2022;302:627–36.CrossRefPubMed Guermazi A, Tannoury C, Kompel AJ, Murakami AM, Ducarouge A, Gillibert A, et al. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology. 2022;302:627–36.CrossRefPubMed
8.
Zurück zum Zitat Shin Y, Kim S, Lee YH. AI musculoskeletal clinical applications: how can AI increase my day-to-day efficiency? Skeletal Radiol. 2022;51:293–304.CrossRefPubMed Shin Y, Kim S, Lee YH. AI musculoskeletal clinical applications: how can AI increase my day-to-day efficiency? Skeletal Radiol. 2022;51:293–304.CrossRefPubMed
9.
Zurück zum Zitat Gorelik N, Gyftopoulos S. Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report. Can Assoc Radiol J. 2021;72:45–59.CrossRefPubMed Gorelik N, Gyftopoulos S. Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report. Can Assoc Radiol J. 2021;72:45–59.CrossRefPubMed
10.
Zurück zum Zitat Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med. 2018;15:e1002699.CrossRefPubMedPubMedCentral Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med. 2018;15:e1002699.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Liu F, Guan B, Zhou Z, Samsonov A, Rosas H, Lian K, et al. Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning. Radiol: Artif Intell. 2019;1:180091.PubMed Liu F, Guan B, Zhou Z, Samsonov A, Rosas H, Lian K, et al. Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning. Radiol: Artif Intell. 2019;1:180091.PubMed
12.
Zurück zum Zitat Li Z, Ren S, Zhou R, Jiang X, You T, Li C, et al. Deep Learning-Based Magnetic Resonance Imaging Image Features for Diagnosis of Anterior Cruciate Ligament Injury. J Healthc Eng. 2021;2021:e4076175. Li Z, Ren S, Zhou R, Jiang X, You T, Li C, et al. Deep Learning-Based Magnetic Resonance Imaging Image Features for Diagnosis of Anterior Cruciate Ligament Injury. J Healthc Eng. 2021;2021:e4076175.
13.
Zurück zum Zitat Ren M, Yi PH. Artificial intelligence in orthopedic implant model classification: a systematic review. Skeletal Radiol. 2022;51:407–16.CrossRefPubMed Ren M, Yi PH. Artificial intelligence in orthopedic implant model classification: a systematic review. Skeletal Radiol. 2022;51:407–16.CrossRefPubMed
14.
Zurück zum Zitat Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging. 2019;49:400–10.CrossRefPubMed Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging. 2019;49:400–10.CrossRefPubMed
15.
16.
Zurück zum Zitat Roblot V, Giret Y, Bou Antoun M, Morillot C, Chassin X, Cotten A, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019;100:243–9.CrossRefPubMed Roblot V, Giret Y, Bou Antoun M, Morillot C, Chassin X, Cotten A, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019;100:243–9.CrossRefPubMed
17.
Zurück zum Zitat Germann C, Marbach G, Civardi F, Fucentese SF, Fritz J, Sutter R, et al. Deep Convolutional Neural Network-Based Diagnosis of Anterior Cruciate Ligament Tears: Performance Comparison of Homogenous Versus Heterogeneous Knee MRI Cohorts With Different Pulse Sequence Protocols and 1.5-T and 3-T Magnetic Field Strengths. Invest Radiol. 2020;55:499–506.CrossRefPubMedPubMedCentral Germann C, Marbach G, Civardi F, Fucentese SF, Fritz J, Sutter R, et al. Deep Convolutional Neural Network-Based Diagnosis of Anterior Cruciate Ligament Tears: Performance Comparison of Homogenous Versus Heterogeneous Knee MRI Cohorts With Different Pulse Sequence Protocols and 1.5-T and 3-T Magnetic Field Strengths. Invest Radiol. 2020;55:499–506.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Fritz B, Marbach G, Civardi F, Fucentese SF, Pfirrmann CWA. Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference. Skeletal Radiol. 2020;49:1207–17.CrossRefPubMedPubMedCentral Fritz B, Marbach G, Civardi F, Fucentese SF, Pfirrmann CWA. Deep convolutional neural network-based detection of meniscus tears: comparison with radiologists and surgery as standard of reference. Skeletal Radiol. 2020;49:1207–17.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Zhang L, Li M, Zhou Y, Lu G, Zhou Q. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard. J Magn Reson Imaging. 2020;52:1745–52.CrossRefPubMed Zhang L, Li M, Zhou Y, Lu G, Zhou Q. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard. J Magn Reson Imaging. 2020;52:1745–52.CrossRefPubMed
20.
Zurück zum Zitat Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva F, et al. Deep Learning for Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries from MRI. Radiol: Artif Intell. 2020;2:e190207.PubMed Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva F, et al. Deep Learning for Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries from MRI. Radiol: Artif Intell. 2020;2:e190207.PubMed
21.
Zurück zum Zitat Rizk B, Brat H, Zille P, Guillin R, Pouchy C, Adam C, et al. Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med. 2021;83:64–71.CrossRefPubMed Rizk B, Brat H, Zille P, Guillin R, Pouchy C, Adam C, et al. Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med. 2021;83:64–71.CrossRefPubMed
22.
Zurück zum Zitat Astuto B, Flament I, Namiri KN, Shah R, Bharadwaj U, Link MT, et al. Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies. Radiol Artif Intell. 2021;3:e200165.CrossRefPubMedPubMedCentral Astuto B, Flament I, Namiri KN, Shah R, Bharadwaj U, Link MT, et al. Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies. Radiol Artif Intell. 2021;3:e200165.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Zarandi MHF, Khadangi A, Karimi F, Turksen IB. A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear. J Digit Imaging. 2016;29:677–95.CrossRefPubMedPubMedCentral Zarandi MHF, Khadangi A, Karimi F, Turksen IB. A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear. J Digit Imaging. 2016;29:677–95.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Couteaux V, Si-Mohamed S, Nempont O, Lefevre T, Popoff A, Pizaine G, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging. 2019;100:235–42.CrossRefPubMed Couteaux V, Si-Mohamed S, Nempont O, Lefevre T, Popoff A, Pizaine G, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging. 2019;100:235–42.CrossRefPubMed
25.
Zurück zum Zitat Awan MJ, Rahim MSM, Salim N, Mohammed MA, Garcia-Zapirain B, Abdulkareem KH. Efficient Detection of Knee Anterior Cruciate Ligament from Magnetic Resonance Imaging Using Deep Learning Approach. Diagnostics. 2021;11:105.CrossRefPubMed Awan MJ, Rahim MSM, Salim N, Mohammed MA, Garcia-Zapirain B, Abdulkareem KH. Efficient Detection of Knee Anterior Cruciate Ligament from Magnetic Resonance Imaging Using Deep Learning Approach. Diagnostics. 2021;11:105.CrossRefPubMed
26.
Zurück zum Zitat Jeon Y, Yoshino K, Hagiwara S, Watanabe A, Quek ST, Yoshioka H, et al. Interpretable and Lightweight 3-D Deep Learning Model for Automated ACL Diagnosis. IEEE J Biomed Health Inform. 2021;25:2388–97.CrossRefPubMed Jeon Y, Yoshino K, Hagiwara S, Watanabe A, Quek ST, Yoshioka H, et al. Interpretable and Lightweight 3-D Deep Learning Model for Automated ACL Diagnosis. IEEE J Biomed Health Inform. 2021;25:2388–97.CrossRefPubMed
27.
Zurück zum Zitat Awan MJ, Rahim MSM, Salim N, Rehman A, Nobanee H, Shabir H. Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging. J Personalized Med. 2021;11:1163.CrossRef Awan MJ, Rahim MSM, Salim N, Rehman A, Nobanee H, Shabir H. Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging. J Personalized Med. 2021;11:1163.CrossRef
28.
Zurück zum Zitat Tack A, Shestakov A, Lüdke D, Zachow S. A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database. Front Bioeng Biotechnol. 2021;9:747217.CrossRefPubMedPubMedCentral Tack A, Shestakov A, Lüdke D, Zachow S. A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database. Front Bioeng Biotechnol. 2021;9:747217.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Qiu X, Liu Z, Zhuang M, Cheng D, Zhu C, Zhang X. Fusion of CNN1 and CNN2-based magnetic resonance image diagnosis of knee meniscus injury and a comparative analysis with computed tomography. Comput Methods Programs Biomed. 2021;211:106297.CrossRefPubMed Qiu X, Liu Z, Zhuang M, Cheng D, Zhu C, Zhang X. Fusion of CNN1 and CNN2-based magnetic resonance image diagnosis of knee meniscus injury and a comparative analysis with computed tomography. Comput Methods Programs Biomed. 2021;211:106297.CrossRefPubMed
30.
Zurück zum Zitat Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2:35.CrossRefPubMedPubMedCentral Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2:35.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Santomartino SM, Siegel E, Yi PH. Academic Radiology Departments Should Lead Artificial Intelligence Initiatives. Acad Radiol. 2023;30:971–4.CrossRefPubMed Santomartino SM, Siegel E, Yi PH. Academic Radiology Departments Should Lead Artificial Intelligence Initiatives. Acad Radiol. 2023;30:971–4.CrossRefPubMed
32.
Zurück zum Zitat Venkatesh K, Santomartino SM, Sulam J, Yi PH. Code and Data Sharing Practices in the Radiology Artificial Intelligence Literature: A Meta-Research Study. Radiol Artif Intell. 2022;4:e220081.CrossRefPubMedPubMedCentral Venkatesh K, Santomartino SM, Sulam J, Yi PH. Code and Data Sharing Practices in the Radiology Artificial Intelligence Literature: A Meta-Research Study. Radiol Artif Intell. 2022;4:e220081.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Saba L, Biswas M, Kuppili V, Cuadrado Godia E, Suri HS, Edla DR, et al. The present and future of deep learning in radiology. Eur J Radiol. 2019;114:14–24.CrossRefPubMed Saba L, Biswas M, Kuppili V, Cuadrado Godia E, Suri HS, Edla DR, et al. The present and future of deep learning in radiology. Eur J Radiol. 2019;114:14–24.CrossRefPubMed
34.
Zurück zum Zitat Kiseleva A, Kotzinos D, De Hert P. Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations. Front Artif Intell. 2022;5:879603.CrossRefPubMedPubMedCentral Kiseleva A, Kotzinos D, De Hert P. Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations. Front Artif Intell. 2022;5:879603.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Collins GS, de Groot JA, Dutton S, Omar O, Shanyinde M, Tajar A, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014;14:40.CrossRefPubMedPubMedCentral Collins GS, de Groot JA, Dutton S, Omar O, Shanyinde M, Tajar A, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014;14:40.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KJ, Goh VJ, et al. Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers—From the Radiology Editorial Board. Radiology. 2020;294:487–9.CrossRefPubMed Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KJ, Goh VJ, et al. Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers—From the Radiology Editorial Board. Radiology. 2020;294:487–9.CrossRefPubMed
37.
Zurück zum Zitat Mongan J, Moy L, Kahn CE. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell. 2020;2:e200029.CrossRefPubMedPubMedCentral Mongan J, Moy L, Kahn CE. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell. 2020;2:e200029.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, et al. Natural and Artificial Intelligence in Neurosurgery: A Systematic Review. Neurosurgery. 2018;83:181–92.CrossRefPubMed Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, et al. Natural and Artificial Intelligence in Neurosurgery: A Systematic Review. Neurosurgery. 2018;83:181–92.CrossRefPubMed
39.
Zurück zum Zitat Santomartino SM, Yi PH. Systematic Review of Radiologist and Medical Student Attitudes on the Role and Impact of AI in Radiology. Acad Radiol. 2022;29:1748–56.CrossRefPubMed Santomartino SM, Yi PH. Systematic Review of Radiologist and Medical Student Attitudes on the Role and Impact of AI in Radiology. Acad Radiol. 2022;29:1748–56.CrossRefPubMed
40.
Zurück zum Zitat Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19:453–73.CrossRefPubMed Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19:453–73.CrossRefPubMed
Metadaten
Titel
Systematic review of artificial intelligence development and evaluation for MRI diagnosis of knee ligament or meniscus tears
verfasst von
Samantha M. Santomartino
Justin Kung
Paul H. Yi
Publikationsdatum
16.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology / Ausgabe 3/2024
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-023-04416-2

Weitere Artikel der Ausgabe 3/2024

Skeletal Radiology 3/2024 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.