Skip to main content
Erschienen in: Strahlentherapie und Onkologie 5/2024

Open Access 07.09.2023 | Original Article

Radiation therapy for cancer is potentially associated with reduced growth of concomitant abdominal aortic aneurysm

verfasst von: Aaron Becker von Rose, Kathrin Kobus, Bianca Bohmann, Moritz Lindquist-Lilljequist, Wolf Eilenberg, Marvin Kapalla, Florian Bassermann, Christian Reeps, Hans-Henning Eckstein, Christoph Neumayer, Christine Brostjan, Joy Roy, Korbinian von Heckel, Rebecka Hultgren, Benedikt J. Schwaiger, Stephanie E. Combs, Albert Busch, Kilian Schiller

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 5/2024

Abstract

Purpose

Co-prevalence of abdominal aortic aneurysm (AAA) and cancer poses a unique challenge in medical care since both diseases and their respective therapies might interact. Recently, reduced AAA growth rates were observed in cancer patients that received radiation therapy (RT). The purpose of this study was to perform a fine-grained analysis of the effects of RT on AAA growth with respect to direct (infield) and out-of-field (outfield) radiation exposure, and radiation dose-dependency.

Methods

A retrospective single-center analysis identified patients with AAA, cancer, and RT. Clinical data, radiation plans, and aneurysm diameters were analyzed. The total dose of radiation to each aneurysm was computed. AAA growth under infield and outfield exposure was compared to patients with AAA and cancer that did not receive RT (no-RT control) and to an external noncancer AAA reference cohort.

Results

Between 2003 and 2020, a total of 38 AAA patients who had received well-documented RT for their malignancy were identified. AAA growth was considerably reduced for infield patients (n = 18) compared to outfield patients (n = 20), albeit not significantly (0.8 ± 1.0 vs. 1.3 ± 1.6 mm/year, p = 0.28). Overall, annual AAA growth in RT patients was lower compared to no-RT control patients (1.1 ± 1.5 vs. 1.8 ± 2.2 mm/year, p = 0.06) and significantly reduced compared to the reference cohort (1.1 ± 1.5 vs. 2.7 ± 2.1 mm/year, p < 0.001). The pattern of AAA growth reduction due to RT was corroborated in linear regression analyses correcting for initial AAA diameter. A further investigation with respect to dose-dependency of radiation effects on AAA growth, however, revealed no apparent association.

Conclusion

In this study, both infield and outfield radiation exposure were associated with reduced AAA growth. This finding warrants further investigation, both in a larger scale clinical cohort and on a molecular level.
Hinweise

Supplementary Information

The online version of this article (https://​doi.​org/​10.​1007/​s00066-023-02135-0) contains supplementary material, which is available to authorized users.
Albert Busch and Kilian Schiller share last authorship.

Introduction

With an increase in elderly patients due to rising life expectancy, the issue of multimorbidity and in particular the co-prevalence of cancer and cardiovascular diseases is becoming one of the major challenges in medical care [1, 2]. Depending on the type of cancer, up to almost 5% of patients are estimated to have concurrent disease affecting the circulatory system [3]. Abdominal aortic aneurysm (AAA) is the most common aneurysm of the aorta and is associated with an inherent risk of rupture, which despite surgical care proves fatal in ~75% of cases [4]. Approximately 5% of AAA patients have a concomitant malignant disease [5].
International guidelines recommend aneurysm treatment for cancer patients in line with noncancer patients, based on diameter threshold or growth rate irrespective of malignancy status and cancer therapy [6]. Specific types of cancer and cancer therapies, however, might be associated with a transformative effect on aneurysm growth and rupture risk.
While the effect of chemotherapies on AAA growth has been investigated in three large retrospective cohort studies, the effects of radiation on aneurysm growth are unknown [79]. However, radiation is part of more than 50% of modern anti-cancer regimens [10, 11]. Recently, our group detected a potentially beneficial effect of radiation therapy (RT) on aneurysm growth stability in a cohort of 217 patients [9]. Here, annual AAA growth rates were significantly reduced in cancer patients who received RT compared to cancer patients without RT and to a nonmalignancy reference cohort.
To shed further light on this unexpected finding, we re-analyzed this cohort regarding radiation plans and a dose-dependency of radiation effects on AAA growth stabilization. We hypothesized a possible local and/or systemic effect of RT in the aneurysm wall that warrants further elucidation regarding infield/outfield effects.

Patients and methods

Patient identification

Patients were retrospectively identified as described before [9]. Briefly, all cleared computed tomography (CT) examination reports in the institutional picture archiving and communication system (PACS) database from thorax, abdomen and/or pelvis examinations acquired between January 1, 2003 and March 31, 2020, were screened using a full-text query including the key words ‘aneurysm’ and ‘carcinoma’, ‘tumor’, ‘radiotherapy’, ‘radiation therapy’ and the different types of carcinomas (Suppl. Table 1). Patient data were pseudonymized for further analysis. Data are reported in accordance with Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria [12].

Inclusion/exclusion criteria

Inclusion criteria were presence of a malignant tumor, in-house RT with detailed radiation plan on hand, and presence of an AAA (maximum transverse diameter > 30 mm) confirmed by CT angiography (CTA). Patients with an initial AAA diameter between 20–29 mm that surpassed 30 mm during the course of the study (n = 8) and patients with an initial diameter > 49 mm (n = 3) were analyzed but have been excluded from comparisons with other patient cohorts. AAA location was strictly abdominal, namely infra- (n = 36) and juxtarenal (n = 2). Patients with thoracic or thoracoabdominal aneurysms were excluded. In addition, for longitudinal aneurysm growth, a CT-based follow-up period of ≥ 6 months covering ≥ 2 individual CT(A) examinations was required.
Tumor diagnosis and RT had to overlap with AAA diagnosis, and patients were included if: (i) an ongoing RT started no more than 12 months before the baseline CT; (ii) RT was within the CT observation period; (iii) RT was initiated > 3 months before the last CTA.
Exclusion criteria were age < 18 years, incomplete clinical (no established tumor diagnosis) or imaging data, and diagnosis of aortic dissection or connective tissue disease.
As an in-house control for the effect of RT, AAA patients with concomitant malignancy that have not received RT (no-RT control) were identified using otherwise identical criteria.
An overview of the patient analysis and identification workflow is given in Suppl. Fig. 1. All patient cohorts are described in detail in Tables 1 and 2 and Suppl. Tables 2–4.
Table 1
Patient characteristics. Details on comorbidities and medication were not available for all patients. In these categories, percentages are given with respect to the number of patients for which this information was available
 
RTa
Infielda
Outfielda
RT
Infield
Outfield
No-RT control
Noncancer reference
 
n = 38
%
n = 18
%
n = 20
%
n = 27
%
n = 13
%
n = 14
%
n = 62
%
n = 158
%
Patient characteristics
Male
32
84.2
15
83.3
17
85.0
22
81.5
10
76.9
12
85.7
58
93.5
125
79.1
Age (years: mean ± SD)
71 ± 7.3
71 ± 8.5
70 ± 3.7
72 ± 6.6
74 ± 7.1
71 ± 5.8
69 ± 7.9
71 ± 8.2
Comorbidities
26
68.4
13
72.2
13
65.0
19
70.4
10
76.9
9
64.3
44
71.0
158
100.0
Arterial hypertension
17
65.4
10
76.9
7
53.8
12
63.2
7
70.0
5
55.6
27
61.4
92
58.2
Coronary artery disease
11
42.3
5
38.5
6
46.2
7
36.8
3
30.0
4
44.4
19
43.2
47
29.7
Hyperlipidemia
9
34.6
4
30.8
5
38.5
7
36.8
3
30.0
4
44.4
15
34.1
72
45.6
Diabetes
8
30.8
3
23.1
5
38.5
6
31.6
3
30.0
3
33.3
8
18.2
36
24.7
Peripheral artery disease
1
3.8
1
7.7
0
0.0
1
5.3
1
10.0
0
0.0
9
20.5
21
13.3
Smoker (current/former)
11
42.3
6
46.2
5
38.5
7
36.8
5
50.0
2
22.2
26
59.1
134
84.8
Medication
20
52.6
9
50.0
11
55.0
14
51.9
7
53.8
7
50.0
15
24.2
158
100.0
Antiplatelets
13
65.0
7
77.8
6
54.5
9
64.3
5
71.4
4
57.1
7
46.7
107
67.7
Statins
8
40.0
2
22.2
6
54.5
4
28.6
1
14.3
3
42.9
7
46.7
82
51.9
Antihypertensives
8
40.0
2
22.2
6
54.5
5
35.7
1
14.3
4
57.1
7
46.7
83
52.5
Metformin
3
15.0
1
11.1
2
18.2
2
14.3
1
14.3
1
14.3
1
6.7
28
17.7
Insulin
1
5.0
1
11.1
0
0.0
1
7.1
1
14.3
0
0.0
2
13.3
5
3.2
Observation time
Years (mean ± SD)
4.8 ± 3.5
5.5 ± 3.2
4.3 ± 3.8
4.0 ± 2.9
4.2 ± 2.5
3.8 ± 3.4
3.5 ± 3.1
3.2 ± 1.3
SD standard deviation, AAA abdominal aortic aneurysm
aThe radiation therapy (RT) cohorts marked with a superscript include patients with an initial AAA diameter between 20–29 and > 49 mm that were subsequently removed for comparison with the no-RT control and the reference
Table 2
Average and median annual AAA growth rates in the different patient cohorts. For all above cohorts, data stratified for initial aneurysm size classes is given in Suppl. Table 4
Patient cohort
RTa (n = 38)
Infielda (n = 18)
Outfielda (n = 20)
RT (n = 27)
Infield (n = 13)
Outfield (n = 14)
No-RT control (n = 62)
Noncancer reference (n = 158)
Average annual AAA growth rate (mm/year)
1.06
0.79
1.31
1.09
0.73
1.42
1.80
2.72
SD
1.33
1.01
1.55
1.50
1.18
1.72
2.19
2.08
Median annual AAA growth rate (mm/year)
1.00
0.84
1.14
1.16
0.21
1.25
1.39
2.33
IQR
1.36
1.24
1.76
1.47
1.32
1.88
1.99
2.39
SD standard deviation, AAA abdominal aortic aneurysm, IQR interquartile range
aThe radiation therapy (RT) cohorts marked with a superscript include patients with an initial AAA diameter between 20–29 and > 49 mm that were subsequently removed for comparison with the no-RT control and the reference

Outcome parameters

The primary outcome was the average annual AAA growth rate in the study cohort with respect to RT (yes vs. no).
The secondary outcome was the AAA growth rate with respect to AAA location inside (infield) or outside (outfield) of the dose wash of the radiation field.
The tertiary outcome was the AAA growth rate with respect to the dosage of radiation.
In addition, the AAA growth rate based on initial diameter was studied in this AAA + cancer cohort in comparison to a noncancer AAA reference cohort.

Stepwise analysis process

The included patients were individually assessed based on electronic patient files and medical records by two reviewers (ABR, KK) independently. For every CT(A) the aneurysm defined in the examination report was reviewed and a centerline-based leading edge transversal measurement of the maximum diameter was obtained by three independent reviewers (KK, BS, AB) using a three-dimensional (3D) multiplanar reconstruction (MPR), while two were completely blinded to the medical records (BS, AB). Consensus was reached upon discrepancy by joint reassessment [13]. All aneurysm growth data were calculated using the “first–last diameter/time” method as reviewed before [14, 15].
The patient baseline characteristics included sex, age, comorbidities (arterial hypertension, coronary artery disease, hyperlipidemia, diabetes, peripheral artery disease, connective tissue disease, and smoking status) and medication (antiplatelets, statins, antihypertensives, metformin, insulin). Specific malignancies were grouped together based on affected organ and prevailing malignancy based on the International Classification of Diseases (ICD; Suppl. Table 1). Tumor stages were summarized by the TNM staging system.

Computation of aneurysmal radiation exposure

Every aneurysm was manually contoured by a specialist in radiation oncology (KS) using the available CT scans that had been created for RT treatment planning. Various metrics for aneurysmal radiation exposure were computed using Aria planning software (Varian Medical Systems Inc., Palo Alto, CA, USA). These metrics include maximum dose delivered to the AAA in Gray (Gy), minimum dose delivered in Gy, and mean dose delivered in Gy. The fractionation scheme and total dose applied in Gy were also recorded. Furthermore, all aneurysms were grouped according to the binary classification: infield vs. outfield. Infield aneurysms were located in the vicinity of the target of RT, i.e., the tumor, and subjected to varying degrees of radiation, while outfield aneurysms were located farther away and received no considerable (< 0.1 Gy) radiation exposure.

Nonmalignancy AAA reference cohort

To obtain a reference cohort for statistical comparison, AAA growth data from two independent noncancer cohorts (Vienna and Stockholm AAA monitoring cohorts) were pooled, as reported before [9, 16, 17]. Briefly, all patients with ≥ 2 CT-based aneurysm diameter measurements over ≥ 6 months, no diagnosis of and treatment for cancer < 1 year before, during and < 1 year after the AAA growth data time-period, and an initial aortic diameter between 30–49 mm were included. Patients receiving steroid therapy for indications other than cancer were excluded. The observation time span was limited to 5 years. Thus, for all patients with follow-ups longer than 5 years, the aneurysm size at 5 years was calculated by linear interpolation in-between the closest measurements before and after the 5‑year boundary. This estimated 5‑year aneurysm diameter was then used in the last–first approximated growth rate calculations. No further adjustments were made.

Statistical analysis

Where applicable values are shown as median (interquartile range: IQR) or average ± standard deviation (SD). All statistical analyses were performed using R version 4.0.3 (R Foundation, Vienna, Austria) and graphics were created using the ggplot2 package. The level of significance was set at p < 0.05. For the comparison of two groups, a Welch’s t‑test was used, under the assumption of normal distribution. To assure comparability, only patients with an initial AAA diameter of 30–49 mm were used in all statistical analyses that compared different patient groups (RT vs. no-RT control vs. noncancer reference).
To account for the confounding effect of initial AAA diameter on AAA growth, a linear regression model was used to compare the growth rates among the different patient cohorts: rate = a × dmax0 + est. × radiation + intercept.
Here, “est.” represents the estimated influence of the binary variable radiation (YES or NO) on AAA growth. It describes the increase or decrease of the annual AAA growth rate (mm/year) due to radiation. A similar model was used, to determine whether the amount of Gray that an AAA was subjected to affects its growth rate.

Results

Over a 17-year period, 38 patients with AAA and concomitant malignancy (84% male, age 71 ± 7.3 years) who received well-documented RT met the inclusion criteria. Patient characteristics, comorbidities and medication are shown in Table 1. No aneurysm other than abdominal (36 infra-/2 juxtarenal) was detected.
The 38 patients had 47 malignancies (Suppl. Table 2). Prostate (34%), lung (18%), and head/neck cancer (16%) were the most frequent tumor entities. The majority of patients (66%) also received chemotherapy at some point (Suppl. Table 3). Overall, the average annual aneurysm growth in this AAA + cancer + RT cohort was 1.1 ± 1.3 mm (Table 2).

AAA growth with respect to infield/outfield localization

All AAAs included in the study have been manually contoured on the CT scans that were used for RT planning (Fig. 1, Suppl. Fig. 2). Eighteen AAAs that were located in proximity to the target of radiation were classified as “infield”, while 20 AAAs outside of the area that received considerable radiation were classified as “outfield”. The average annual growth rate of infield AAAs was lower compared to outfield AAAs, albeit not significantly (0.8 ± 1.0 vs. 1.3 ± 1.6 mm/year, p = 0.28; Table 2).

AAA growth in RT and no-RT cancer patients

In the RT cohort, 27 of 38 patients had an initial AAA diameter of 30–49 mm and were eligible for further comparison to other groups. To this end, 62 AAA patients with an initial diameter of 30–49 mm and concomitant malignancy that had not received RT, but chemotherapy or surgery were identified using otherwise identical inclusion criteria (no-RT control; Table 1, Suppl. Table 2–3). In both groups, neither aneurysm- or cancer-surgery-related death nor AAA rupture occurred during the observation period. AAA growth was considerably reduced in the RT cohort compared to the no-RT control (Fig. 2a; 1.1 ± 1.5 vs. 1.8 ± 2.2 mm/year, p = 0.06). This growth reduction was more pronounced in infield (n = 13) as opposed to outfield (n = 14) aneurysms (Fig. 2b, Table 2).

AAA growth in cancer and noncancer patients

AAA + cancer patients were compared to a noncancer AAA all-comers cohort with initial diameters 30–49 mm and an available follow-up time of up to 5 years (noncancer reference). In the reference cohort a higher proportion of female patients and smokers was seen (Table 1). Patients in the RT cohort showed a significantly reduced AAA growth rate compared to the noncancer reference (1.1 ± 1.5 vs. 2.7 ± 2.1 mm/year, p < 0.001; Fig. 2a, Table 2).

AAA growth stratified by initial aneurysm diameter

When stratified for initial aneurysm diameter, infield aneurysms displayed the lowest annual growth rate in all AAA size classes (Fig. 2c). The AAA subclass with initial aneurysm diameter of 45–49 mm displayed significantly reduced AAA growth in RT vs. noncancer patients (1.1 ± 1.8 vs. 3.2 ± 2.4 mm/year, p = 0.04). Linear regression analyses correcting for initial AAA diameter reveal substantially reduced growth due to radiation for AAAs in RT patients compared to the no-RT control (est. = −0.63 mm/year, p = 0.17) and the noncancer reference (est. = −1.02 mm/year, p = 0.03; Fig. 2d). Furthermore, within the RT cohort, infield AAAs grew considerably slower than outfield AAAs (est. = −0.46 mm/year, p = 0.30; Fig. 2d).

AAA growth with respect to radiation dosage

Different metrics for radiation exposure were calculated for all AAAs in the entire RT patient group (n = 38). Linear regression analyses correcting for initial AAA diameter showed no significant correlation between the amount of radiation exposure (both meanGy and maxGy) and AAA growth, with effect sizes being very small (meanGy: est. = −0.02 mm/year, p = 0.34; maxGy: est. = −0.01 mm/year, p = 0.41; Suppl. Fig. 3).

Discussion

In this pilot exploration of RT on AAA + cancer patients, we found that RT might be associated with reduced AAA growth rates. This effect was observed in both infield and outfield patients, but more pronounced for patients whose AAA received direct radiation, although no general radiation dose-dependency was apparent (Fig. 2, Suppl. Fig. 3).
The association between RT and AAA growth reduction is an unexpected finding. In the literature, so far, RT has been primarily linked to an increased risk for cardiovascular disease [1820]. RT for head and neck cancer is associated with the risk of carotid stenosis [21, 22]. Several studies report the formation of intracranial aneurysms as a consequence of RT [2327]. On the other hand, RT has been reported to halt neoplastic aneurysm growth in rare cases (e.g., myxomatous aneurysms in the brain) [28].
The immune system plays a complex role in AAA formation and progression [29]. Traditionally, RT has been primarily associated with immunosuppressive effects [30]. According to this rationale, local radiation can cause systemic immunosuppression leading to a potential reduction of immune infiltration and, thus, an alleviation of inflammatory processes within the aneurysm wall that, in turn, might lead to a stabilizing effect on AAA growth in RT patients. An increasing number of studies regarding cancer therapy regimens that successfully combine RT and immunotherapy, however, argue for a more nuanced view [3133]. Importantly, these studies also demonstrate abscopal (i.e., systemic) effects of RT that stimulate the immune response [34]. Accordingly, RT has the potential to influence immune infiltration and inflammatory processes in infield as well as outfield aneurysms in a complex fashion.
Since we can only speculate about the precise mode of action by which RT might lead to AAA stabilization, it would be very interesting to investigate the molecular and physiological effects of radiation on AAA growth in readily available murine models of AAA [35].
Naturally, reasons other than RT might influence AAA growth in cancer patients. In a recent publication we demonstrated a significant association between antimetabolite therapy and increased AAA growth, while administration of a variety of other chemotherapeutic agents showed trends for a possible AAA growth reduction [9]. Likewise, changes in lifestyle upon cancer diagnosis or cancer-related weight loss resulting in reduced metabolic syndrome might alter AAA growth. Inherently, indication for RT and AAA proximity to the target of radiation largely depend on cancer entity.
The study is limited by the small group size, especially with respect to initial aneurysm size, impeding statistical analysis and leading to possible type I errors with subgroups of only very few patients. Nevertheless, the use of a model accounting for initial aortic diameter is important, since growth and eventual rupture rates are diameter-dependent (Fig. 2c, [6, 14]). The retrospective identification of the study cohort constitutes an inherent bias. Aneurysms were identified based on CT report search, possibly lacking sufficient sensitivity upon diagnosis, whereas aneurysms in the reference cohort were pooled from aneurysm monitoring programs.
Since well-documented RT was relatively scarce in our institutional database due to many patients receiving RT in an external facility, the no-RT control cohort is larger in size. In addition, in being limited to a single-center analysis we were unable to generate datasets of AAA + cancer patients that match the size of the external noncancer reference cohort. Due to a low number of female patients, the results presented here cannot be generalized to the female population (Table 1).
Also, the cohorts presented here are relatively small and quite heterogenous with respect to the nature of their malignant disease and therapy combinations (Suppl. Table 2–3). Notably, all these features might interact in a complex fashion and obscure the statistical analysis of individual factors. Hence, further prospective research and multicenter approaches that allow for larger patient cohorts are needed to corroborate and refine the results presented here. If feasible, future studies should take additional predictors of AAA growth, such as AAA volume and AAA wall volume, into account [36]. Particularly for women, an indexing of aneurysm size measurements to body surface area could prove useful [37].
Especially in elderly multimorbid aneurysm patients, where surgery is associated with a high mortality risk, RT might present a much-needed noninvasive treatment alternative.

Conclusion

The results from this study suggest that radiation therapy (RT) for cancer might be associated with reduced abdominal aortic aneurysm (AAA) growth. While this effect might be more pronounced in infield as opposed to outfield AAAs, the present data do not support a general radiation dose dependency. The potential stabilizing effect of RT on aneurysm progression could be a worthwhile investigation on a molecular level.

Declarations

Conflict of interest

A. Becker von Rose, K. Kobus, B. Bohmann, M. Lindquist-Lilljequist, W. Eilenberg, M. Kapalla, F. Bassermann, C. Reeps, H.-H. Eckstein, C. Neumayer, C. Brostjan, J. Roy, K. von Heckel, R. Hultgren, B.J. Schwaiger, S.E. Combs, A. Busch and K. Schiller declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee (Ethikkommission University Hospital rechts der Isar, Technical University Munich, Germany: 195/20S) and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Strahlentherapie und Onkologie

Print-Titel

•Übersichten, Originalien, Kasuistiken

•Kommentierte Literatur aus der Radioonkologie, Strahlenbiologie und -physik

Literatur
1.
Zurück zum Zitat Garin N, Koyanagi A, Chatterji S, Tyrovolas S, Olaya B, Leonardi M et al (2016) Global multimorbidity patterns: a cross-sectional, population-based, multi-country study. J Gerontol A Biol Sci Med Sci 71(2):205–214CrossRefPubMed Garin N, Koyanagi A, Chatterji S, Tyrovolas S, Olaya B, Leonardi M et al (2016) Global multimorbidity patterns: a cross-sectional, population-based, multi-country study. J Gerontol A Biol Sci Med Sci 71(2):205–214CrossRefPubMed
2.
Zurück zum Zitat Souza DLB, Oliveras-Fabregas A, Minobes-Molina E, de Camargo Cancela M, Galbany-Estragues P, Jerez-Roig J (2021) Trends of multimorbidity in 15 European countries: a population-based study in community-dwelling adults aged 50 and over. BMC Public Health 21(1):76CrossRefPubMedPubMedCentral Souza DLB, Oliveras-Fabregas A, Minobes-Molina E, de Camargo Cancela M, Galbany-Estragues P, Jerez-Roig J (2021) Trends of multimorbidity in 15 European countries: a population-based study in community-dwelling adults aged 50 and over. BMC Public Health 21(1):76CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Fowler H, Belot A, Ellis L, Maringe C, Luque-Fernandez MA, Njagi EN et al (2020) Comorbidity prevalence among cancer patients: a population-based cohort study of four cancers. BMC Cancer 20(1):2CrossRefPubMedPubMedCentral Fowler H, Belot A, Ellis L, Maringe C, Luque-Fernandez MA, Njagi EN et al (2020) Comorbidity prevalence among cancer patients: a population-based cohort study of four cancers. BMC Cancer 20(1):2CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Salata K, Syed M, Hussain MA, de Mestral C, Greco E, Mamdani M et al (2018) Statins reduce abdominal aortic aneurysm growth, rupture, and perioperative mortality: a systematic review and meta-analysis. J Am Heart Assoc 7(19):e8657CrossRefPubMedPubMedCentral Salata K, Syed M, Hussain MA, de Mestral C, Greco E, Mamdani M et al (2018) Statins reduce abdominal aortic aneurysm growth, rupture, and perioperative mortality: a systematic review and meta-analysis. J Am Heart Assoc 7(19):e8657CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Maeda K, Ohki T, Kanaoka Y, Toya N, Baba T, Hara M et al (2016) Current surgical management of abdominal aortic aneurysm with concomitant malignancy in the endovascular era. Surg Today 46(8):985–994CrossRefPubMed Maeda K, Ohki T, Kanaoka Y, Toya N, Baba T, Hara M et al (2016) Current surgical management of abdominal aortic aneurysm with concomitant malignancy in the endovascular era. Surg Today 46(8):985–994CrossRefPubMed
6.
Zurück zum Zitat Wanhainen A, Verzini F, Van Herzeele I, Allaire E, Bown M, Cohnert T et al (2019) Editor’s choice—European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg 57(1):8–93CrossRefPubMed Wanhainen A, Verzini F, Van Herzeele I, Allaire E, Bown M, Cohnert T et al (2019) Editor’s choice—European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg 57(1):8–93CrossRefPubMed
7.
Zurück zum Zitat Maxwell DW, Kenney L, Sarmiento JM, Rajani RR (2021) Aortic aneurysm natural progression is not influenced by concomitant malignancy and chemotherapy. Ann Vasc Surg 71:29–39CrossRefPubMed Maxwell DW, Kenney L, Sarmiento JM, Rajani RR (2021) Aortic aneurysm natural progression is not influenced by concomitant malignancy and chemotherapy. Ann Vasc Surg 71:29–39CrossRefPubMed
8.
Zurück zum Zitat Martin ZL, Mastracci TM, Greenberg RK, Morales JP, Bena J (2015) The effect of chemotherapy for malignancy on the natural history of aortic aneurysm. J Vasc Surg 61(1):50–57CrossRefPubMed Martin ZL, Mastracci TM, Greenberg RK, Morales JP, Bena J (2015) The effect of chemotherapy for malignancy on the natural history of aortic aneurysm. J Vasc Surg 61(1):50–57CrossRefPubMed
9.
Zurück zum Zitat Becker von Rose A, Kobus K, Bohmann B, Lindquist-Lilljequist M, Eilenberg W, Bassermann F et al (2022) Radiation and chemotherapy are associated with altered aortic aneurysm growth in patients with cancer: impact of synchronous cancer and aortic aneurysm. Eur J Vasc Endovasc Surg 64(2–3):255–264CrossRefPubMed Becker von Rose A, Kobus K, Bohmann B, Lindquist-Lilljequist M, Eilenberg W, Bassermann F et al (2022) Radiation and chemotherapy are associated with altered aortic aneurysm growth in patients with cancer: impact of synchronous cancer and aortic aneurysm. Eur J Vasc Endovasc Surg 64(2–3):255–264CrossRefPubMed
10.
Zurück zum Zitat Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199CrossRefPubMedPubMedCentral Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Abshire D, Lang MK (2018) The evolution of radiation therapy in treating cancer. Semin Oncol Nurs 34(2):151–157CrossRefPubMed Abshire D, Lang MK (2018) The evolution of radiation therapy in treating cancer. Semin Oncol Nurs 34(2):151–157CrossRefPubMed
12.
Zurück zum Zitat von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP et al (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370(9596):1453–1457CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP et al (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370(9596):1453–1457CrossRef
13.
Zurück zum Zitat Borgbjerg J, Bogsted M, Lindholt JS, Behr-Rasmussen C, Horlyck A, Frokjaer JB (2018) Superior reproducibility of the leading to leading edge and inner to inner edge methods in the ultrasound assessment of maximum abdominal aortic diameter. Eur J Vasc Endovasc Surg 55(2):206–213CrossRefPubMed Borgbjerg J, Bogsted M, Lindholt JS, Behr-Rasmussen C, Horlyck A, Frokjaer JB (2018) Superior reproducibility of the leading to leading edge and inner to inner edge methods in the ultrasound assessment of maximum abdominal aortic diameter. Eur J Vasc Endovasc Surg 55(2):206–213CrossRefPubMed
14.
Zurück zum Zitat Powell JT, Sweeting MJ, Brown LC, Gotensparre SM, Fowkes FG, Thompson SG (2011) Systematic review and meta-analysis of growth rates of small abdominal aortic aneurysms. Br J Surg 98(5):609–618CrossRefPubMed Powell JT, Sweeting MJ, Brown LC, Gotensparre SM, Fowkes FG, Thompson SG (2011) Systematic review and meta-analysis of growth rates of small abdominal aortic aneurysms. Br J Surg 98(5):609–618CrossRefPubMed
15.
Zurück zum Zitat Sweeting MJ, Thompson SG, Brown LC, Powell JT (2012) Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg 99(5):655–665CrossRefPubMed Sweeting MJ, Thompson SG, Brown LC, Powell JT (2012) Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg 99(5):655–665CrossRefPubMed
16.
Zurück zum Zitat Eilenberg W, Zagrapan B, Bleichert S, Ibrahim N, Knobl V, Brandau A et al (2021) Histone citrullination as a novel biomarker and target to inhibit progression of abdominal aortic aneurysms. Transl Res 233:32–46CrossRefPubMed Eilenberg W, Zagrapan B, Bleichert S, Ibrahim N, Knobl V, Brandau A et al (2021) Histone citrullination as a novel biomarker and target to inhibit progression of abdominal aortic aneurysms. Transl Res 233:32–46CrossRefPubMed
17.
Zurück zum Zitat Lindquist Liljeqvist M, Bogdanovic M, Siika A, Gasser TC, Hultgren R, Roy J (2021) Geometric and biomechanical modeling aided by machine learning improves the prediction of growth and rupture of small abdominal aortic aneurysms. Sci Rep 11(1):18040CrossRefPubMedPubMedCentral Lindquist Liljeqvist M, Bogdanovic M, Siika A, Gasser TC, Hultgren R, Roy J (2021) Geometric and biomechanical modeling aided by machine learning improves the prediction of growth and rupture of small abdominal aortic aneurysms. Sci Rep 11(1):18040CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Eken SM, Christersdottir T, Winski G, Sangsuwan T, Jin H, Chernogubova E et al (2019) miR-29b mediates the chronic inflammatory response in radiotherapy-induced vascular disease. JACC Basic Transl Sci 4(1):72–82CrossRefPubMedPubMedCentral Eken SM, Christersdottir T, Winski G, Sangsuwan T, Jin H, Chernogubova E et al (2019) miR-29b mediates the chronic inflammatory response in radiotherapy-induced vascular disease. JACC Basic Transl Sci 4(1):72–82CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Yang EH, Marmagkiolis K, Balanescu DV, Hakeem A, Donisan T, Finch W et al (2021) Radiation-induced vascular disease—A state-of-the-art review. Front Cardiovasc Med 8:652761CrossRefPubMedPubMedCentral Yang EH, Marmagkiolis K, Balanescu DV, Hakeem A, Donisan T, Finch W et al (2021) Radiation-induced vascular disease—A state-of-the-art review. Front Cardiovasc Med 8:652761CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Wennstig AK, Garmo H, Wadsten L, Lagerqvist B, Fredriksson I, Holmberg L et al (2022) Risk of coronary stenosis after adjuvant radiotherapy for breast cancer. Strahlenther Onkol 198(7):630–638CrossRefPubMedPubMedCentral Wennstig AK, Garmo H, Wadsten L, Lagerqvist B, Fredriksson I, Holmberg L et al (2022) Risk of coronary stenosis after adjuvant radiotherapy for breast cancer. Strahlenther Onkol 198(7):630–638CrossRefPubMedPubMedCentral
21.
22.
Zurück zum Zitat Texakalidis P, Giannopoulos S, Tsouknidas I, Song S, Rivet DJ, Reiter ER, Reavey-Cantwell J (2020) Prevalence of carotid stenosis following radiotherapy for head and neck cancer: a systematic review and meta-analysis. Head Neck 42(5):1077–1088CrossRefPubMed Texakalidis P, Giannopoulos S, Tsouknidas I, Song S, Rivet DJ, Reiter ER, Reavey-Cantwell J (2020) Prevalence of carotid stenosis following radiotherapy for head and neck cancer: a systematic review and meta-analysis. Head Neck 42(5):1077–1088CrossRefPubMed
23.
Zurück zum Zitat Casey AT, Marsh HT, Uttley D (1993) Intracranial aneurysm formation following radiotherapy. Br J Neurosurg 7(5):575–579CrossRefPubMed Casey AT, Marsh HT, Uttley D (1993) Intracranial aneurysm formation following radiotherapy. Br J Neurosurg 7(5):575–579CrossRefPubMed
24.
Zurück zum Zitat Jensen FK, Wagner A (1997) Intracranial aneurysm following radiation therapy for medulloblastoma. A case report and review of the literature. Acta Radiol 38(1):37–42PubMed Jensen FK, Wagner A (1997) Intracranial aneurysm following radiation therapy for medulloblastoma. A case report and review of the literature. Acta Radiol 38(1):37–42PubMed
25.
Zurück zum Zitat Matsumoto H, Minami H, Yamaura I, Yoshida Y (2014) Radiation-induced cerebral aneurysm treated with endovascular coil embolization. A case report. Interv Neuroradiol 20(4):448–453CrossRefPubMedPubMedCentral Matsumoto H, Minami H, Yamaura I, Yoshida Y (2014) Radiation-induced cerebral aneurysm treated with endovascular coil embolization. A case report. Interv Neuroradiol 20(4):448–453CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Wu YH, Lin SS, Chen HH, Chang FC, Liang ML, Wong TT et al (2016) Radiotherapy-related intracranial aneurysm: case presentation of a 17-year male and a meta-analysis based on individual patient data. Childs Nerv Syst 32(9):1641–1652CrossRefPubMed Wu YH, Lin SS, Chen HH, Chang FC, Liang ML, Wong TT et al (2016) Radiotherapy-related intracranial aneurysm: case presentation of a 17-year male and a meta-analysis based on individual patient data. Childs Nerv Syst 32(9):1641–1652CrossRefPubMed
27.
Zurück zum Zitat Parag S, Arif Z, Chittoor R (2016) Radiotherapy-related intracranial aneurysms: a role for conservative management. Surg Neurol Int 7(14):387–390CrossRef Parag S, Arif Z, Chittoor R (2016) Radiotherapy-related intracranial aneurysms: a role for conservative management. Surg Neurol Int 7(14):387–390CrossRef
28.
Zurück zum Zitat Khatibi K, Ponce Mejia LL, Kaneko N, Ooi Y, Kaprealian T, Gonzalez NR, Pouratian N, Szeder V (2020) Targeted radiation therapy can treat myxomatous cerebral aneurysms. World Neurosurg 143:332–335CrossRefPubMed Khatibi K, Ponce Mejia LL, Kaneko N, Ooi Y, Kaprealian T, Gonzalez NR, Pouratian N, Szeder V (2020) Targeted radiation therapy can treat myxomatous cerebral aneurysms. World Neurosurg 143:332–335CrossRefPubMed
29.
Zurück zum Zitat Li H, Bai S, Ao Q, Wang X, Tian X, Li X et al (2018) Modulation of immune-inflammatory responses in abdominal aortic aneurysm: emerging molecular targets. J Immunol Res 2018:7213760CrossRefPubMedPubMedCentral Li H, Bai S, Ao Q, Wang X, Tian X, Li X et al (2018) Modulation of immune-inflammatory responses in abdominal aortic aneurysm: emerging molecular targets. J Immunol Res 2018:7213760CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Wara WM (1977) Immunosuppression associated with radiation therapy. Int J Radiat Oncol Biol Phys 2(5–6):593–596CrossRefPubMed Wara WM (1977) Immunosuppression associated with radiation therapy. Int J Radiat Oncol Biol Phys 2(5–6):593–596CrossRefPubMed
31.
Zurück zum Zitat Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F (2018) Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol 10:1758834017742575CrossRefPubMedPubMedCentral Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F (2018) Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol 10:1758834017742575CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Romano E, Honeychurch J, Illidge TM (2021) Radiotherapy-immunotherapy combination: how will we bridge the gap between pre-clinical promise and effective clinical delivery? Cancers (Basel) 13(3):457CrossRefPubMed Romano E, Honeychurch J, Illidge TM (2021) Radiotherapy-immunotherapy combination: how will we bridge the gap between pre-clinical promise and effective clinical delivery? Cancers (Basel) 13(3):457CrossRefPubMed
33.
Zurück zum Zitat Herter JM, Kiljan M, Kunze S, Reinscheid M, Ibruli O, Cai J et al (2023) Influence of chemoradiation on the immune microenvironment of cervical cancer patients. Strahlenther Onkol 199(2):121–130CrossRefPubMed Herter JM, Kiljan M, Kunze S, Reinscheid M, Ibruli O, Cai J et al (2023) Influence of chemoradiation on the immune microenvironment of cervical cancer patients. Strahlenther Onkol 199(2):121–130CrossRefPubMed
34.
Zurück zum Zitat Carvalho HA, Villar RC (2018) Radiotherapy and immune response: the systemic effects of a local treatment. Clinics (Sao Paulo) 73(1):e557sCrossRefPubMed Carvalho HA, Villar RC (2018) Radiotherapy and immune response: the systemic effects of a local treatment. Clinics (Sao Paulo) 73(1):e557sCrossRefPubMed
35.
Zurück zum Zitat Busch A, Bleichert S, Ibrahim N, Wortmann M, Eckstein HH, Brostjan C et al (2021) Translating mouse models of abdominal aortic aneurysm to the translational needs of vascular surgery. JVS Vasc Sci 2:219–234CrossRefPubMedPubMedCentral Busch A, Bleichert S, Ibrahim N, Wortmann M, Eckstein HH, Brostjan C et al (2021) Translating mouse models of abdominal aortic aneurysm to the translational needs of vascular surgery. JVS Vasc Sci 2:219–234CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Khan M, Rogers S, Carreira J, Ghosh J, McCollum C (2022) Aneurysm geometry analyzed by the novel three-dimensional tomographic ultrasound relates to abdominal aortic aneurysm growth. Ann Vasc Surg 87:469–477CrossRefPubMed Khan M, Rogers S, Carreira J, Ghosh J, McCollum C (2022) Aneurysm geometry analyzed by the novel three-dimensional tomographic ultrasound relates to abdominal aortic aneurysm growth. Ann Vasc Surg 87:469–477CrossRefPubMed
37.
Zurück zum Zitat Lo RC, Lu B, Fokkema MT, Conrad M, Patel VI, Fillinger M et al (2014) Relative importance of aneurysm diameter and body size for predicting abdominal aortic aneurysm rupture in men and women. J Vasc Surg 59(5):1209–1216CrossRefPubMed Lo RC, Lu B, Fokkema MT, Conrad M, Patel VI, Fillinger M et al (2014) Relative importance of aneurysm diameter and body size for predicting abdominal aortic aneurysm rupture in men and women. J Vasc Surg 59(5):1209–1216CrossRefPubMed
Metadaten
Titel
Radiation therapy for cancer is potentially associated with reduced growth of concomitant abdominal aortic aneurysm
verfasst von
Aaron Becker von Rose
Kathrin Kobus
Bianca Bohmann
Moritz Lindquist-Lilljequist
Wolf Eilenberg
Marvin Kapalla
Florian Bassermann
Christian Reeps
Hans-Henning Eckstein
Christoph Neumayer
Christine Brostjan
Joy Roy
Korbinian von Heckel
Rebecka Hultgren
Benedikt J. Schwaiger
Stephanie E. Combs
Albert Busch
Kilian Schiller
Publikationsdatum
07.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 5/2024
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-023-02135-0

Weitere Artikel der Ausgabe 5/2024

Strahlentherapie und Onkologie 5/2024 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.