Skip to main content
Erschienen in: Skeletal Radiology 6/2024

02.12.2023 | Scientific Article

Multiparametric quantification of T1 and T2 relaxation time of bone metastasis in comparison with red or fatty bone marrow using magnetic resonance fingerprinting

verfasst von: Hokyun Byun, Dongyeob Han, Ho Jong Chun, Sheen-Woo Lee

Erschienen in: Skeletal Radiology | Ausgabe 6/2024

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To assess the T1 and T2 values of bone marrow lesions in spine and pelvis derived from magnetic resonance fingerprinting (MRF) and to evaluate the differences in values among bone metastasis, red marrow and fatty marrow.

Methods

Sixty patients who underwent lumbar spine and pelvic MRI with magnetic resonance fingerprinting were retrospectively included. Among eligible patients, those with bone metastasis, benign red marrow deposition and normal fatty marrow were identified. Two radiologists independently measured the T1 and T2 values from metastatic bone lesions, fatty marrow, and red marrow deposition on three-dimensional-magnetic resonance fingerprinting. Intergroup comparison and interobserver agreement were analyzed.

Results

T1 relaxation time was significantly higher in osteoblastic metastasis than in red marrow (1674.6 ± 436.3 vs 858.7 ± 319.5, p < .001). Intraclass correlation coefficients for T1 and T2 values were 0.96 (p < 0.001) and 0.83 (p < 0.001), respectively. T2 relaxation time of osteoblastic metastasis and red marrow deposition had no evidence of a difference (osteoblastic metastasis, 57.9 ± 25.0 vs red marrow, 58.0 ± 34.4, p = 0.45), as were the average T2 values of osteolytic metastasis and red marrow deposition (osteolytic metastasis, 45.3 ± 15.1 vs red marrow, 58.0 ± 34.4, p = 0.63).

Conclusions

We report the feasibility of three-dimensional-magnetic resonance fingerprinting based quantification of bone marrow to differentiate bone metastasis from red marrow. Simultaneous T1 and T2 quantification of metastasis and red marrow deposition was possible in spine and pelvis and showed significant different values with excellent inter-reader agreement.

Advance in knowledge

T1 values from three-dimensional-magnetic resonance fingerprinting might be a useful quantifier for evaluating bone marrow lesions.
Literatur
1.
Zurück zum Zitat Swartz PG, Roberts CC. Radiological reasoning: bone marrow changes on MRI. AJR Am J Roentgenol. 2009;193(3):S1-4-S5-9.PubMed Swartz PG, Roberts CC. Radiological reasoning: bone marrow changes on MRI. AJR Am J Roentgenol. 2009;193(3):S1-4-S5-9.PubMed
2.
Zurück zum Zitat Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? Ann Oncol. 2015;26(6):1048–57.PubMedCrossRef Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? Ann Oncol. 2015;26(6):1048–57.PubMedCrossRef
3.
Zurück zum Zitat Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone Marrow Metastases: T2-weighted Dixon Spin-Echo Fat Images Can Replace T1-weighted Spin-Echo Images. Radiology. 2018;286(3):948–59.PubMedCrossRef Maeder Y, Dunet V, Richard R, Becce F, Omoumi P. Bone Marrow Metastases: T2-weighted Dixon Spin-Echo Fat Images Can Replace T1-weighted Spin-Echo Images. Radiology. 2018;286(3):948–59.PubMedCrossRef
4.
Zurück zum Zitat Vanel D, Missenard G, Le Cesne A, Guinebretière JM. Red marrow recolonization induced by growth factors mimicking an increase in tumor volume during preoperative chemotherapy: MR study. J Comput Assist Tomogr. 1997;21(4):529–31.PubMedCrossRef Vanel D, Missenard G, Le Cesne A, Guinebretière JM. Red marrow recolonization induced by growth factors mimicking an increase in tumor volume during preoperative chemotherapy: MR study. J Comput Assist Tomogr. 1997;21(4):529–31.PubMedCrossRef
5.
Zurück zum Zitat Sakamoto A, Otsuki B, Okamoto T, Goto T, Yoshimura T, Matsuda S. Diffuse Appearance of Red Bone Marrow on MRI Mimics Cancer Metastasis and Might be Associated with Heavy Smoking. Open Orthop J. 2018;12(1):451–61.CrossRef Sakamoto A, Otsuki B, Okamoto T, Goto T, Yoshimura T, Matsuda S. Diffuse Appearance of Red Bone Marrow on MRI Mimics Cancer Metastasis and Might be Associated with Heavy Smoking. Open Orthop J. 2018;12(1):451–61.CrossRef
7.
Zurück zum Zitat Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2018;47(2):332–53.PubMedCrossRef Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2018;47(2):332–53.PubMedCrossRef
8.
Zurück zum Zitat Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23(1):165–70.PubMedPubMedCentral Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23(1):165–70.PubMedPubMedCentral
9.
Zurück zum Zitat Chan J, Peh W, Tsui E, Chau L, Cheung K, Chan K, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002;75(891):207–14.PubMedCrossRef Chan J, Peh W, Tsui E, Chau L, Cheung K, Chan K, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002;75(891):207–14.PubMedCrossRef
10.
Zurück zum Zitat Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol. 2018;28(7):2890–902.PubMedCrossRef Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol. 2018;28(7):2890–902.PubMedCrossRef
11.
Zurück zum Zitat Bray TJ, Chouhan MD, Punwani S, Bainbridge A, Hall-Craggs MA. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol. 2018;91(1089):20170344.PubMed Bray TJ, Chouhan MD, Punwani S, Bainbridge A, Hall-Craggs MA. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol. 2018;91(1089):20170344.PubMed
12.
Zurück zum Zitat Leplat C, Hossu G, Chen B, De Verbizier J, Beaumont M, Blum A, et al. Contrast-Enhanced 3-T Perfusion MRI With Quantitative Analysis for the Characterization of Musculoskeletal Tumors: Is It Worth the Trouble? AJR Am J Roentgenol. 2018;211(5):1092–8.PubMedCrossRef Leplat C, Hossu G, Chen B, De Verbizier J, Beaumont M, Blum A, et al. Contrast-Enhanced 3-T Perfusion MRI With Quantitative Analysis for the Characterization of Musculoskeletal Tumors: Is It Worth the Trouble? AJR Am J Roentgenol. 2018;211(5):1092–8.PubMedCrossRef
13.
Zurück zum Zitat Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;74(6):1621–31.PubMedCrossRef Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;74(6):1621–31.PubMedCrossRef
14.
Zurück zum Zitat Jiang Y, Ma D, Keenan KE, Stupic KF, Gulani V, Griswold MA. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom. Magn Reson Med. 2017;78(4):1452–7.PubMedCrossRef Jiang Y, Ma D, Keenan KE, Stupic KF, Gulani V, Griswold MA. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom. Magn Reson Med. 2017;78(4):1452–7.PubMedCrossRef
15.
Zurück zum Zitat Buonincontri G, Biagi L, Retico A, Cecchi P, Cosottini M, Gallagher FA, et al. Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T. Neuroimage. 2019;195:362–72.PubMedCrossRef Buonincontri G, Biagi L, Retico A, Cecchi P, Cosottini M, Gallagher FA, et al. Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T. Neuroimage. 2019;195:362–72.PubMedCrossRef
16.
Zurück zum Zitat Körzdörfer G, Kirsch R, Liu K, Pfeuffer J, Hensel B, Jiang Y, et al. Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain. Radiology. 2019;292(2):429–37.PubMedCrossRef Körzdörfer G, Kirsch R, Liu K, Pfeuffer J, Hensel B, Jiang Y, et al. Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain. Radiology. 2019;292(2):429–37.PubMedCrossRef
17.
Zurück zum Zitat Han D, Choi MH, Lee YJ, Kim DH. Feasibility of Novel Three-Dimensional Magnetic Resonance Fingerprinting of the Prostate Gland: Phantom and Clinical Studies. Korean J Radiol. 2021;22(8):1332–40.PubMedPubMedCentralCrossRef Han D, Choi MH, Lee YJ, Kim DH. Feasibility of Novel Three-Dimensional Magnetic Resonance Fingerprinting of the Prostate Gland: Phantom and Clinical Studies. Korean J Radiol. 2021;22(8):1332–40.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.PubMedCrossRef Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.PubMedCrossRef
19.
20.
Zurück zum Zitat Saifuddin A, Tyler P, Rajakulasingam R. Imaging of bone marrow pitfalls with emphasis on MRI. Br J Radiol. 2023;96(1142):20220063.PubMedCrossRef Saifuddin A, Tyler P, Rajakulasingam R. Imaging of bone marrow pitfalls with emphasis on MRI. Br J Radiol. 2023;96(1142):20220063.PubMedCrossRef
21.
Zurück zum Zitat Akay S, Kocaoglu M, Emer O, Battal B, Arslan N. Diagnostic accuracy of whole-body diffusion-weighted magnetic resonance imaging with 3.0 T in detection of primary and metastatic neoplasms. J Med Imaging Radiat Oncol. 2013;57(3):274–82.PubMedCrossRef Akay S, Kocaoglu M, Emer O, Battal B, Arslan N. Diagnostic accuracy of whole-body diffusion-weighted magnetic resonance imaging with 3.0 T in detection of primary and metastatic neoplasms. J Med Imaging Radiat Oncol. 2013;57(3):274–82.PubMedCrossRef
22.
Zurück zum Zitat Ghanem N, Lohrmann C, Engelhardt M, Pache G, Uhl M, Saueressig U, et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol. 2006;16(5):1005–14.PubMedCrossRef Ghanem N, Lohrmann C, Engelhardt M, Pache G, Uhl M, Saueressig U, et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol. 2006;16(5):1005–14.PubMedCrossRef
23.
Zurück zum Zitat Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.PubMedCrossRef Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.PubMedCrossRef
25.
Zurück zum Zitat Messiou C, Hillengass J, Delorme S, Lecouvet FE, Moulopoulos LA, Collins DJ, et al. Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body MRI in Myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology. 2019;291(1):5–13.PubMedCrossRef Messiou C, Hillengass J, Delorme S, Lecouvet FE, Moulopoulos LA, Collins DJ, et al. Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body MRI in Myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology. 2019;291(1):5–13.PubMedCrossRef
26.
Zurück zum Zitat Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Lecouvet F. Whole Body MRI and oncology: recent major advances. Br J Radiol. 2018;91(1090):20170664.PubMedPubMedCentralCrossRef Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Lecouvet F. Whole Body MRI and oncology: recent major advances. Br J Radiol. 2018;91(1090):20170664.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat McElroy S, Winfield JM, Westerland O, Charles-Edwards G, Bell J, Neji R, et al. Integrated slice-specific dynamic shimming for whole-body diffusion-weighted MR imaging at 1.5 T. MAGMA. 2021;34(4):513–21.PubMedCrossRef McElroy S, Winfield JM, Westerland O, Charles-Edwards G, Bell J, Neji R, et al. Integrated slice-specific dynamic shimming for whole-body diffusion-weighted MR imaging at 1.5 T. MAGMA. 2021;34(4):513–21.PubMedCrossRef
28.
Zurück zum Zitat Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, et al. Simultaneous T(1) and T(2) Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting. Tomography. 2015;1(2):136–44.PubMedPubMedCentralCrossRef Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, et al. Simultaneous T(1) and T(2) Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting. Tomography. 2015;1(2):136–44.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Badve C, Yu A, Dastmalchian S, Rogers M, Ma D, Jiang Y, et al. MR Fingerprinting of Adult Brain Tumors: Initial Experience. AJNR Am J Neuroradiol. 2017;38(3):492–9.PubMedPubMedCentralCrossRef Badve C, Yu A, Dastmalchian S, Rogers M, Ma D, Jiang Y, et al. MR Fingerprinting of Adult Brain Tumors: Initial Experience. AJNR Am J Neuroradiol. 2017;38(3):492–9.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Chen Y, Panda A, Pahwa S, Hamilton JI, Dastmalchian S, McGivney DF, et al. Three-dimensional MR Fingerprinting for Quantitative Breast Imaging. Radiology. 2019;290(1):33–40.PubMedCrossRef Chen Y, Panda A, Pahwa S, Hamilton JI, Dastmalchian S, McGivney DF, et al. Three-dimensional MR Fingerprinting for Quantitative Breast Imaging. Radiology. 2019;290(1):33–40.PubMedCrossRef
31.
Zurück zum Zitat Panda A, Chen Y, Ropella-Panagis K, Ghodasara S, Stopchinski M, Seyfried N, et al. Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue. J Magn Reson Imaging. 2019;50(4):1133–43.PubMedPubMedCentralCrossRef Panda A, Chen Y, Ropella-Panagis K, Ghodasara S, Stopchinski M, Seyfried N, et al. Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue. J Magn Reson Imaging. 2019;50(4):1133–43.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Liu Y, Hamilton J, Rajagopalan S, Seiberlich N. Cardiac Magnetic Resonance Fingerprinting: Technical Overview and Initial Results. JACC Cardiovasc Imaging. 2018;11(12):1837–53.PubMedPubMedCentralCrossRef Liu Y, Hamilton J, Rajagopalan S, Seiberlich N. Cardiac Magnetic Resonance Fingerprinting: Technical Overview and Initial Results. JACC Cardiovasc Imaging. 2018;11(12):1837–53.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Coristine AJ, Hamilton J, van Heeswijk RB, Hullin R, Seiberlich N. Cardiac magnetic resonance fingerprinting in heart transplant recipients. Coristine AJ, Hamilton J, van Heeswijk RB, Hullin R, Seiberlich N. Cardiac magnetic resonance fingerprinting in heart transplant recipients.
34.
Zurück zum Zitat Cloos MA, Assländer J, Abbas B, Fishbaugh J, Babb JS, Gerig G, et al. Rapid Radial T(1) and T(2) Mapping of the Hip Articular Cartilage With Magnetic Resonance Fingerprinting. J Magn Reson Imaging. 2019;50(3):810–5.PubMedCrossRef Cloos MA, Assländer J, Abbas B, Fishbaugh J, Babb JS, Gerig G, et al. Rapid Radial T(1) and T(2) Mapping of the Hip Articular Cartilage With Magnetic Resonance Fingerprinting. J Magn Reson Imaging. 2019;50(3):810–5.PubMedCrossRef
35.
Zurück zum Zitat Koolstra K, Beenakker JM, Koken P, Webb A, Börnert P. Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion-based reconstructions. Magn Reson Med. 2019;81(4):2551–65.PubMedCrossRef Koolstra K, Beenakker JM, Koken P, Webb A, Börnert P. Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion-based reconstructions. Magn Reson Med. 2019;81(4):2551–65.PubMedCrossRef
36.
Zurück zum Zitat Ma D, Jones SE, Deshmane A, Sakaie K, Pierre EY, Larvie M, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging. 2019;49(5):1333–46.PubMedCrossRef Ma D, Jones SE, Deshmane A, Sakaie K, Pierre EY, Larvie M, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging. 2019;49(5):1333–46.PubMedCrossRef
37.
Zurück zum Zitat Liao C, Wang K, Cao X, Li Y, Wu D, Ye H, et al. Detection of Lesions in Mesial Temporal Lobe Epilepsy by Using MR Fingerprinting. Radiology. 2018;288(3):804–12.PubMedCrossRef Liao C, Wang K, Cao X, Li Y, Wu D, Ye H, et al. Detection of Lesions in Mesial Temporal Lobe Epilepsy by Using MR Fingerprinting. Radiology. 2018;288(3):804–12.PubMedCrossRef
38.
Zurück zum Zitat Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, et al. MR Fingerprinting for Rapid Quantitative Abdominal Imaging. Radiology. 2016;279(1):278–86.PubMedCrossRef Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, et al. MR Fingerprinting for Rapid Quantitative Abdominal Imaging. Radiology. 2016;279(1):278–86.PubMedCrossRef
39.
Zurück zum Zitat Su P, Mao D, Liu P, Li Y, Pinho MC, Welch BG, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017;78(5):1812–23.PubMedCrossRef Su P, Mao D, Liu P, Li Y, Pinho MC, Welch BG, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017;78(5):1812–23.PubMedCrossRef
40.
Zurück zum Zitat Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 2016;7:12445.PubMedPubMedCentralCrossRef Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 2016;7:12445.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Chen Y, Chen MH, Baluyot KR, Potts TM, Jimenez J, Lin W. MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life. Neuroimage. 2019;186:782–93.PubMedCrossRef Chen Y, Chen MH, Baluyot KR, Potts TM, Jimenez J, Lin W. MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life. Neuroimage. 2019;186:782–93.PubMedCrossRef
42.
Zurück zum Zitat Arita Y, Takahara T, Yoshida S, Kwee TC, Yajima S, Ishii C, et al. Quantitative Assessment of Bone Metastasis in Prostate Cancer Using Synthetic Magnetic Resonance Imaging. Invest Radiol. 2019;54(10):638–44.PubMedCrossRef Arita Y, Takahara T, Yoshida S, Kwee TC, Yajima S, Ishii C, et al. Quantitative Assessment of Bone Metastasis in Prostate Cancer Using Synthetic Magnetic Resonance Imaging. Invest Radiol. 2019;54(10):638–44.PubMedCrossRef
43.
Zurück zum Zitat Choi MH, Lee SW, Kim HG, Kim JY, Oh SW, Han D, et al. 3D MR fingerprinting (MRF) for simultaneous T1 and T2 quantification of the bone metastasis: Initial validation in prostate cancer patients. Eur J Radiol. 2021;144:109990.PubMedCrossRef Choi MH, Lee SW, Kim HG, Kim JY, Oh SW, Han D, et al. 3D MR fingerprinting (MRF) for simultaneous T1 and T2 quantification of the bone metastasis: Initial validation in prostate cancer patients. Eur J Radiol. 2021;144:109990.PubMedCrossRef
44.
Zurück zum Zitat Sharafi A, Medina K, Zibetti MWV, Rao S, Cloos MA, Brown R, et al. Simultaneous T1, T2, and T1rho relaxation mapping of the lower leg muscle with MR fingerprinting. Magn Reson Med. 2021;86(1):372–81.PubMedPubMedCentralCrossRef Sharafi A, Medina K, Zibetti MWV, Rao S, Cloos MA, Brown R, et al. Simultaneous T1, T2, and T1rho relaxation mapping of the lower leg muscle with MR fingerprinting. Magn Reson Med. 2021;86(1):372–81.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Nolte T, Gross-Weege N, Doneva M, Koken P, Elevelt A, Truhn D, et al. Spiral blurring correction with water-fat separation for magnetic resonance fingerprinting in the breast. Magn Reson Med. 2020;83(4):1192–207.PubMedCrossRef Nolte T, Gross-Weege N, Doneva M, Koken P, Elevelt A, Truhn D, et al. Spiral blurring correction with water-fat separation for magnetic resonance fingerprinting in the breast. Magn Reson Med. 2020;83(4):1192–207.PubMedCrossRef
46.
Zurück zum Zitat Jaubert O, Cruz G, Bustin A, Hajhosseiny R, Nazir S, Schneider T, et al. T1, T2, and Fat Fraction Cardiac MR Fingerprinting: Preliminary Clinical Evaluation. J Magn Reson Imaging. 2021;53(4):1253–65.PubMedCrossRef Jaubert O, Cruz G, Bustin A, Hajhosseiny R, Nazir S, Schneider T, et al. T1, T2, and Fat Fraction Cardiac MR Fingerprinting: Preliminary Clinical Evaluation. J Magn Reson Imaging. 2021;53(4):1253–65.PubMedCrossRef
47.
Zurück zum Zitat Marty B, Reyngoudt H, Boisserie JM, Le Louër J, Araujo CAE, Fromes Y, et al. Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders. Radiology. 2021;300(3):652–60.PubMedCrossRef Marty B, Reyngoudt H, Boisserie JM, Le Louër J, Araujo CAE, Fromes Y, et al. Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders. Radiology. 2021;300(3):652–60.PubMedCrossRef
Metadaten
Titel
Multiparametric quantification of T1 and T2 relaxation time of bone metastasis in comparison with red or fatty bone marrow using magnetic resonance fingerprinting
verfasst von
Hokyun Byun
Dongyeob Han
Ho Jong Chun
Sheen-Woo Lee
Publikationsdatum
02.12.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology / Ausgabe 6/2024
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-023-04521-2

Weitere Artikel der Ausgabe 6/2024

Skeletal Radiology 6/2024 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.