Skip to main content
Erschienen in: Inflammation 1/2024

18.11.2023 | RESEARCH

Galectin-3 Mediates Endotoxin Internalization and Caspase-4/11 Activation in Tubular Epithelials and Macrophages During Sepsis and Sepsis-Associated Acute Kidney Injury

verfasst von: Fengyun Wang, Junwei Ye, Weiwei Zhu, Ruiqi Ge, Chang Hu, Yaoyao Qian, Yiming Li, Zhiyong Peng

Erschienen in: Inflammation | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Besides being recognized by membrane receptor TLR4, lipopolysaccharide (LPS) can also be internalized into the cytosol and activate Caspase-4/11 pyroptotic pathways to further amplify inflammation in sepsis. The objective of this study was to investigate whether Galectin-3 (Gal3) could promote the uptake of LPS by governing RAGE or administering endocytosis, consequently activating Caspase 4/11 and mediating pyroptosis in sepsis-associated acute kidney injury (SA-AKI). By pinpointing Gal3, LPS, and EEA1 (endosome-marker) or LAMP1 (lysosome-marker) respectively, immunofluorescence discovered that Gal3 and LPS were mainly aggregated in early endosomes initially and translocated into lysosomes afterwards. In cells and animal models, Gal3 and the Caspase-4/11 pathways were simultaneously activated, and the overexpression of Gal3 could exacerbate pyroptosis, whereas inhibition of Gal3 or the knockdown of its expression could ameliorate pyroptosis, reduce the pathological changes of SA-AKI and improve the survival of the animals with SA-AKI. Silencing RAGE reduced pyroptosis in primary tubular epithelial cells (PTCs) activated by Gal3 and LPS but not in cells activated by Gal3 and outer membrane vesicles (with LPS inside), whereas pyroptosis in both was reduced by blockade of Gal3, indicating Gal3 promoted pyroptosis through both RAGE-dependent and RAGE-independent pathways. Our investigation further revealed a positive correlation between serum Gal3 and pyroptotic biomarkers IL-1 beta and IL-18 in patients with sepsis, and that serum Gal3 was an independent risk factor for mortality. Through our collective exploration, we unraveled the significant role of Gal3 in the internalization of LPS and the provocation of more intense pyroptosis, thus making it a vital pathogenic factor in SA-AKI and a possible therapeutic target. Gal3 enabled the internalization of endotoxin into endosomes and lysosomes via both RAGE-dependent (A) and RAGE-independent (B) pathways, leading to pyroptosis. The suppression of Gal3 curbed Caspase4/11 noncanonical inflammasomes and diminished sepsis and SA-AKI.

Graphical Abstract

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lelubre, C., and J.L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews. Nephrology 14 (7): 417–427.CrossRefPubMed Lelubre, C., and J.L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews. Nephrology 14 (7): 417–427.CrossRefPubMed
2.
Zurück zum Zitat Opal, S.M., P.F. Laterre, B. Francois, S.P. LaRosa, D.C. Angus, J.P. Mira, X. Wittebole, T. Dugernier, D. Perrotin, M. Tidswell, et al. 2013. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA 309 (11): 1154–1162.CrossRefPubMed Opal, S.M., P.F. Laterre, B. Francois, S.P. LaRosa, D.C. Angus, J.P. Mira, X. Wittebole, T. Dugernier, D. Perrotin, M. Tidswell, et al. 2013. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA 309 (11): 1154–1162.CrossRefPubMed
3.
Zurück zum Zitat Rice, T.W., A.P. Wheeler, G.R. Bernard, J.L. Vincent, D.C. Angus, N. Aikawa, I. Demeyer, S. Sainati, N. Amlot, C. Cao, et al. 2010. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Critical Care Medicine 38 (8): 1685–1694.CrossRefPubMed Rice, T.W., A.P. Wheeler, G.R. Bernard, J.L. Vincent, D.C. Angus, N. Aikawa, I. Demeyer, S. Sainati, N. Amlot, C. Cao, et al. 2010. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Critical Care Medicine 38 (8): 1685–1694.CrossRefPubMed
4.
Zurück zum Zitat Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575): 666–671.CrossRefPubMed Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575): 666–671.CrossRefPubMed
5.
Zurück zum Zitat Kayagaki, N., M.T. Wong, I.B. Stowe, S.R. Ramani, L.C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W.P. Lee, A. Muszynski, et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (6151): 1246–1249.CrossRefPubMed Kayagaki, N., M.T. Wong, I.B. Stowe, S.R. Ramani, L.C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W.P. Lee, A. Muszynski, et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (6151): 1246–1249.CrossRefPubMed
6.
Zurück zum Zitat Vanaja, S.K., A.J. Russo, B. Behl, I. Banerjee, M. Yankova, S.D. Deshmukh, and V.A.K. Rathinam. 2016. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165 (5): 1106–1119.CrossRefPubMedPubMedCentral Vanaja, S.K., A.J. Russo, B. Behl, I. Banerjee, M. Yankova, S.D. Deshmukh, and V.A.K. Rathinam. 2016. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165 (5): 1106–1119.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Kutuzova, G.D., R.M. Albrecht, C.M. Erickson and N. 2001. Qureshi Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. Journal of Immunolog 167 (1): 482–489. Kutuzova, G.D., R.M. Albrecht, C.M. Erickson and N. 2001. Qureshi Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. Journal of Immunolog 167 (1): 482–489.
8.
Zurück zum Zitat Deng, M., Y. Tang, W. Li, X. Wang, R. Zhang, X. Zhang, X. Zhao, J. Liu, C. Tang, Z. Liu, et al. 2018. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49 (4): 740–753 e747. Deng, M., Y. Tang, W. Li, X. Wang, R. Zhang, X. Zhang, X. Zhao, J. Liu, C. Tang, Z. Liu, et al. 2018. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49 (4): 740–753 e747.
9.
Zurück zum Zitat Kopp, F., S. Kupsch, and A.B. Schromm. 2016. Lipopolysaccharide-binding protein is bound and internalized by host cells and colocalizes with LPS in the cytoplasm: Implications for a role of lbp in intracellular LPS-signaling. Biochimica et Biophysica Acta 1863 (4): 660–672.CrossRefPubMed Kopp, F., S. Kupsch, and A.B. Schromm. 2016. Lipopolysaccharide-binding protein is bound and internalized by host cells and colocalizes with LPS in the cytoplasm: Implications for a role of lbp in intracellular LPS-signaling. Biochimica et Biophysica Acta 1863 (4): 660–672.CrossRefPubMed
10.
Zurück zum Zitat Gabarin, R.S., M. Li, P.A. Zimmel, J.C. Marshall, Y. Li, and H. Zhang. 2021. Intracellular and extracellular lipopolysaccharide signaling in sepsis: Avenues for novel therapeutic strategies. Journal of Innate Immunity 13 (6): 323–332.CrossRefPubMedPubMedCentral Gabarin, R.S., M. Li, P.A. Zimmel, J.C. Marshall, Y. Li, and H. Zhang. 2021. Intracellular and extracellular lipopolysaccharide signaling in sepsis: Avenues for novel therapeutic strategies. Journal of Innate Immunity 13 (6): 323–332.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Sciacchitano, S., L. Lavra, A. Morgante, A. Ulivieri, F. Magi, G.P. De Francesco, C. Bellotti, L.B. Salehi and A. Ricci. 2018. Galectin-3: one molecule for an alphabet of diseases, from A to Z. International Journal of Molecular Sciences 19 (2). Sciacchitano, S., L. Lavra, A. Morgante, A. Ulivieri, F. Magi, G.P. De Francesco, C. Bellotti,  L.B. Salehi and A. Ricci. 2018. Galectin-3: one molecule for an alphabet of diseases, from A to Z. International Journal of Molecular Sciences 19 (2).
12.
Zurück zum Zitat Wang, F., L. Zhou, A. Eliaz, C. Hu, X. Qiang, L. Ke, G. Chertow, I. Eliaz, and Z. Peng. 2023. The potential roles of galectin-3 in AKI and CKD. Frontiers in Physiology 14: 1090724.CrossRefPubMedPubMedCentral Wang, F., L. Zhou, A. Eliaz, C. Hu, X. Qiang, L. Ke, G. Chertow, I. Eliaz, and Z. Peng. 2023. The potential roles of galectin-3 in AKI and CKD. Frontiers in Physiology 14: 1090724.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Hong, M.H., I.C. Weng, F.Y. Li, W.H. Lin, and F.T. Liu. 2021. Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responses. Journal of Biomedical Science 28 (1): 16.CrossRefPubMedPubMedCentral Hong, M.H., I.C. Weng, F.Y. Li, W.H. Lin, and F.T. Liu. 2021. Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responses. Journal of Biomedical Science 28 (1): 16.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Lo, T.H., H.L. Chen, C.I. Yao, I.C. Weng, C.S. Li, C.C. Huang, N.J. Chen, C.H. Lin and F.T. Liu. 2021. Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. The Proceedings of the National Academy of Sciences U S A 118 (30). Lo, T.H., H.L. Chen, C.I. Yao, I.C. Weng, C.S. Li, C.C. Huang, N.J. Chen, C.H. Lin and F.T. Liu. 2021. Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. The Proceedings of the National Academy of Sciences U S A  118 (30).
15.
Zurück zum Zitat Prud’homme, M., M. Coutrot, T. Michel, L. Boutin, M. Genest, F. Poirier, J.M. Launay, B. Kane, S. Kinugasa, N. Prakoura, et al. 2019. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci 4 (6): 717–732.CrossRefPubMedPubMedCentral Prud’homme, M., M. Coutrot, T. Michel, L. Boutin, M. Genest, F. Poirier, J.M. Launay, B. Kane, S. Kinugasa, N. Prakoura, et al. 2019. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci 4 (6): 717–732.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Sun, H., H. Jiang, A. Eliaz, J.A. Kellum, Z. Peng, and I. Eliaz. 2021. Galectin-3 in septic acute kidney injury: A translational study. Critical Care 25 (1): 109.CrossRefPubMedPubMedCentral Sun, H., H. Jiang, A. Eliaz, J.A. Kellum, Z. Peng, and I. Eliaz. 2021. Galectin-3 in septic acute kidney injury: A translational study. Critical Care 25 (1): 109.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Lakshminarayan, R., C. Wunder, U. Becken, M.T. Howes, C. Benzing, S. Arumugam, S. Sales, N. Ariotti, V. Chambon, C. Lamaze, et al. 2014. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology 16 (6): 595–606.CrossRefPubMed Lakshminarayan, R., C. Wunder, U. Becken, M.T. Howes, C. Benzing, S. Arumugam, S. Sales, N. Ariotti, V. Chambon, C. Lamaze, et al. 2014. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology 16 (6): 595–606.CrossRefPubMed
18.
Zurück zum Zitat Pugliese, G., F. Pricci, C. Iacobini, G. Leto, L. Amadio, P. Barsotti, L. Frigeri, D.K. Hsu, H. Vlassara, F.T. Liu, et al. 2001. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. The FASEB Journal 15 (13): 2471–2479.CrossRefPubMed Pugliese, G., F. Pricci, C. Iacobini, G. Leto, L. Amadio, P. Barsotti, L. Frigeri, D.K. Hsu, H. Vlassara, F.T. Liu, et al. 2001. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. The FASEB Journal 15 (13): 2471–2479.CrossRefPubMed
19.
Zurück zum Zitat Peng, Z.Y., H.Z. Wang, N. Srisawat, X. Wen, T. Rimmele, J. Bishop, K. Singbartl, R. Murugan, and J.A. Kellum. 2012. Bactericidal antibiotics temporarily increase inflammation and worsen acute kidney injury in experimental sepsis. Critical Care Medicine 40 (2): 538–543.CrossRefPubMed Peng, Z.Y., H.Z. Wang, N. Srisawat, X. Wen, T. Rimmele, J. Bishop, K. Singbartl, R. Murugan, and J.A. Kellum. 2012. Bactericidal antibiotics temporarily increase inflammation and worsen acute kidney injury in experimental sepsis. Critical Care Medicine 40 (2): 538–543.CrossRefPubMed
20.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315 (8): 801–810.CrossRefPubMedPubMedCentral Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315 (8): 801–810.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Rahkila, J., F.S. Ekholm, A. Arda, S. Delgado, J. Savolainen, J. Jimenez-Barbero, and R. Leino. 2019. Novel dextran-supported biological probes decorated with disaccharide entities for investigating the carbohydrate-protein interactions of gal-3. ChemBioChem 20 (2): 203–209.CrossRefPubMed Rahkila, J., F.S. Ekholm, A. Arda, S. Delgado, J. Savolainen, J. Jimenez-Barbero, and R. Leino. 2019. Novel dextran-supported biological probes decorated with disaccharide entities for investigating the carbohydrate-protein interactions of gal-3. ChemBioChem 20 (2): 203–209.CrossRefPubMed
22.
Zurück zum Zitat Cui, Y., N.N. Zhang, D. Wang, W.H. Meng, and H.S. Chen. 2022. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-kB signaling pathway in microglia. Journal of Inflammation Research 15: 3369–3385.CrossRefPubMedPubMedCentral Cui, Y., N.N. Zhang, D. Wang, W.H. Meng, and H.S. Chen. 2022. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-kB signaling pathway in microglia. Journal of Inflammation Research 15: 3369–3385.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Aits, S., J. Kricker, B. Liu, A.M. Ellegaard, S. Hamalisto, S. Tvingsholm, E. Corcelle-Termeau, S. Hogh, T. Farkas, A. Holm Jonassen, et al. 2015. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11 (8): 1408–1424.CrossRefPubMedPubMedCentral Aits, S., J. Kricker, B. Liu, A.M. Ellegaard, S. Hamalisto, S. Tvingsholm, E. Corcelle-Termeau, S. Hogh, T. Farkas, A. Holm Jonassen, et al. 2015. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11 (8): 1408–1424.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Jia, J., A. Claude-Taupin, Y. Gu, S.W. Choi, R. Peters, B. Bissa, M.H. Mudd, L. Allers, S. Pallikkuth, K.A. Lidke, et al. 2020. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Developmental Cell 52 (1): 69–87 e68. Jia, J., A. Claude-Taupin, Y. Gu, S.W. Choi, R. Peters, B. Bissa, M.H. Mudd, L. Allers, S. Pallikkuth, K.A. Lidke, et al. 2020. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Developmental Cell 52 (1): 69–87 e68.
25.
Zurück zum Zitat Feeley, E.M., D.M. Pilla-Moffett, E.E. Zwack, A.S. Piro, R. Finethy, J.P. Kolb, J. Martinez, I.E. Brodsky, and J. Coers. 2017. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 114 (9): E1698–E1706.CrossRefPubMedPubMedCentral Feeley, E.M., D.M. Pilla-Moffett, E.E. Zwack, A.S. Piro, R. Finethy, J.P. Kolb, J. Martinez, I.E. Brodsky, and J. Coers. 2017. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 114 (9): E1698–E1706.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Zhao, Y., and F. Shao. 2016. Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Current Opinion in Microbiology 29: 37–42.CrossRefPubMed Zhao, Y., and F. Shao. 2016. Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Current Opinion in Microbiology 29: 37–42.CrossRefPubMed
27.
Zurück zum Zitat Ferrer, M.F., E. Scharrig, N. Charo,A.L. Ripodas, R. Drut, E.A. Carrera Silva, A. Nagel, J.E. Nally, D.P. Montes de Oca, M. Schattner, et al. 2018. Macrophages and galectin 3 control bacterial burden in acute and subacute murine leptospirosis that determines chronic kidney fibrosis. Frontiers in Cellular and Infection Microbiology 8: 384. Ferrer, M.F., E. Scharrig, N. Charo,A.L. Ripodas, R. Drut, E.A. Carrera Silva, A. Nagel, J.E. Nally, D.P. Montes de Oca, M. Schattner, et al. 2018. Macrophages and galectin 3 control bacterial burden in acute and subacute murine leptospirosis that determines chronic kidney fibrosis. Frontiers in Cellular and Infection Microbiology 8: 384.
28.
Zurück zum Zitat da Silva, A.A., T.L. Teixeira, S.C. Teixeira, F.C. Machado, M.A. Dos Santos, T.C. Tomiosso, P.C.B. Tavares, R. Brigido, F.A. Martins, N.S.L. Silva, et al. 2017. Galectin-3: A friend but not a foe during trypanosoma cruzi experimental infection. Frontiers in Cellular and Infection Microbiology 7: 463.CrossRefPubMedPubMedCentral da Silva, A.A., T.L. Teixeira, S.C. Teixeira, F.C. Machado, M.A. Dos Santos, T.C. Tomiosso, P.C.B. Tavares, R. Brigido, F.A. Martins, N.S.L. Silva, et al. 2017. Galectin-3: A friend but not a foe during trypanosoma cruzi experimental infection. Frontiers in Cellular and Infection Microbiology 7: 463.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Ferreira, R.G., L.C. Rodrigues, D.C. Nascimento, A. Kanashiro, P.H. Melo, V.F. Borges, A. Gozzi, Prado D. da Silva, M.C. Borges, F.S. Ramalho, et al. 2018. Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. Journal of Infection 77 (5): 391–397.CrossRefPubMed Ferreira, R.G., L.C. Rodrigues, D.C. Nascimento, A. Kanashiro, P.H. Melo, V.F. Borges, A. Gozzi, Prado D. da Silva, M.C. Borges, F.S. Ramalho, et al. 2018. Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. Journal of Infection 77 (5): 391–397.CrossRefPubMed
30.
Zurück zum Zitat Mackinnon, A.C., M.A. Gibbons, S.L. Farnworth, H. Leffler, U.J. Nilsson, T. Delaine, A.J. Simpson, S.J. Forbes, N. Hirani, J. Gauldie, et al. 2012. Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. American Journal of Respiratory and Critical Care Medicine 185 (5): 537–546.CrossRefPubMedPubMedCentral Mackinnon, A.C., M.A. Gibbons, S.L. Farnworth, H. Leffler, U.J. Nilsson, T. Delaine, A.J. Simpson, S.J. Forbes, N. Hirani, J. Gauldie, et al. 2012. Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. American Journal of Respiratory and Critical Care Medicine 185 (5): 537–546.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Martinez-Martinez, E., C. Brugnolaro, J. Ibarrola, S. Ravassa, M. Buonafine, B. Lopez, A. Fernandez-Celis, R. Querejeta, E. Santamaria, J. Fernandez-Irigoyen, et al. 2019. CT-1 (cardiotrophin-1)-Gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 73 (3): 602–611.CrossRefPubMed Martinez-Martinez, E., C. Brugnolaro, J. Ibarrola, S. Ravassa, M. Buonafine, B. Lopez, A. Fernandez-Celis, R. Querejeta, E. Santamaria, J. Fernandez-Irigoyen, et al. 2019. CT-1 (cardiotrophin-1)-Gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 73 (3): 602–611.CrossRefPubMed
32.
Zurück zum Zitat Henderson, N.C., A.C. Mackinnon, S.L. Farnworth, T. Kipari, C. Haslett, J.P. Iredale, F.T. Liu, J. Hughes, and T. Sethi. 2008. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. American Journal of Pathology 172 (2): 288–298.CrossRefPubMedPubMedCentral Henderson, N.C., A.C. Mackinnon, S.L. Farnworth, T. Kipari, C. Haslett, J.P. Iredale, F.T. Liu, J. Hughes, and T. Sethi. 2008. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. American Journal of Pathology 172 (2): 288–298.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Schroeder, J.T., A.A. Adeosun, and A.P. Bieneman. 2020. Epithelial cell-associated galectin-3 activates human dendritic cell subtypes for pro-inflammatory cytokines. Frontiers in Immunology 11: 524826.CrossRefPubMedPubMedCentral Schroeder, J.T., A.A. Adeosun, and A.P. Bieneman. 2020. Epithelial cell-associated galectin-3 activates human dendritic cell subtypes for pro-inflammatory cytokines. Frontiers in Immunology 11: 524826.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Caniglia, J.L., M.R. Guda, S. Asuthkar, A.J. Tsung, and K.K. Velpula. 2020. A potential role for galectin-3 inhibitors in the treatment of COVID-19. PeerJ 8: e9392.CrossRefPubMedPubMedCentral Caniglia, J.L., M.R. Guda, S. Asuthkar, A.J. Tsung, and K.K. Velpula. 2020. A potential role for galectin-3 inhibitors in the treatment of COVID-19. PeerJ 8: e9392.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Iacobini, C., L. Amadio, G. Oddi, C. Ricci, P. Barsotti, S. Missori, M. Sorcini, U. Di Mario, F. Pricci, and G. Pugliese. 2003. Role of galectin-3 in diabetic nephropathy. Journal of the American Society of Nephrology 14 (8 Suppl 3): S264-270.CrossRefPubMed Iacobini, C., L. Amadio, G. Oddi, C. Ricci, P. Barsotti, S. Missori, M. Sorcini, U. Di Mario, F. Pricci, and G. Pugliese. 2003. Role of galectin-3 in diabetic nephropathy. Journal of the American Society of Nephrology 14 (8 Suppl 3): S264-270.CrossRefPubMed
36.
Zurück zum Zitat Sano, H., D.K. Hsu, J.R. Apgar, L. Yu, B.B. Sharma, I. Kuwabara, S. Izui, and F.T. Liu. 2003. Critical role of galectin-3 in phagocytosis by macrophages. The Journal of Clinical Investigation 112 (3): 389–397.CrossRefPubMedPubMedCentral Sano, H., D.K. Hsu, J.R. Apgar, L. Yu, B.B. Sharma, I. Kuwabara, S. Izui, and F.T. Liu. 2003. Critical role of galectin-3 in phagocytosis by macrophages. The Journal of Clinical Investigation 112 (3): 389–397.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Nomura, K., A. Vilalta, D.H. Allendorf, T.C. Hornik, and G.C. Brown. 2017. Activated microglia desialylate and phagocytose cells via neuraminidase, galectin-3, and mer tyrosine kinase. The Journal of Immunology 198 (12): 4792–4801.CrossRefPubMedPubMedCentral Nomura, K., A. Vilalta, D.H. Allendorf, T.C. Hornik, and G.C. Brown. 2017. Activated microglia desialylate and phagocytose cells via neuraminidase, galectin-3, and mer tyrosine kinase. The Journal of Immunology 198 (12): 4792–4801.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Miao, N., F. Yin, H. Xie, Y. Wang, Y. Xu, Y. Shen, D. Xu, J. Yin, B. Wang, Z. Zhou, et al. 2019. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney International 96 (5): 1105–1120.CrossRefPubMed Miao, N., F. Yin, H. Xie, Y. Wang, Y. Xu, Y. Shen, D. Xu, J. Yin, B. Wang, Z. Zhou, et al. 2019. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney International 96 (5): 1105–1120.CrossRefPubMed
39.
Zurück zum Zitat Chen, Y., H. Wang, J. Shen, R. Deng, X. Yao, Q. Guo, A. Lu, B. Sun, Y. Zhang, and G. Meng. 2019. Gasdermin D drives the nonexosomal secretion of galectin-3, an insulin signal antagonist. The Journal of Immunology 203 (10): 2712–2723.CrossRefPubMed Chen, Y., H. Wang, J. Shen, R. Deng, X. Yao, Q. Guo, A. Lu, B. Sun, Y. Zhang, and G. Meng. 2019. Gasdermin D drives the nonexosomal secretion of galectin-3, an insulin signal antagonist. The Journal of Immunology 203 (10): 2712–2723.CrossRefPubMed
40.
Zurück zum Zitat Yang, D., Y. He, R. Munoz-Planillo, Q. Liu, and G. Nunez. 2015. Caspase-11 requires the pannexin-1 channel and the purinergic p2x7 pore to mediate pyroptosis and endotoxic shock. Immunity 43 (5): 923–932.CrossRefPubMedPubMedCentral Yang, D., Y. He, R. Munoz-Planillo, Q. Liu, and G. Nunez. 2015. Caspase-11 requires the pannexin-1 channel and the purinergic p2x7 pore to mediate pyroptosis and endotoxic shock. Immunity 43 (5): 923–932.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Su, L., X. Jiang, C. Yang, J. Zhang, B. Chen, Y. Li, S. Yao, Q. Xie, H. Gomez, R. Murugan, et al. 2019. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury. Journal of Biological Chemistry 294 (50): 19395–19404.CrossRefPubMedPubMedCentral Su, L., X. Jiang, C. Yang, J. Zhang, B. Chen, Y. Li, S. Yao, Q. Xie, H. Gomez, R. Murugan, et al. 2019. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury. Journal of Biological Chemistry 294 (50): 19395–19404.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Su, L., J. Zhang, J. Wang, X. Wang, E. Cao, C. Yang, Q. Sun, R. Sivakumar, and Z. Peng. 2023. Pannexin 1 targets mitophagy to mediate renal ischemia/reperfusion injury. Commun Biol 6 (1): 889.CrossRefPubMedPubMedCentral Su, L., J. Zhang, J. Wang, X. Wang, E. Cao, C. Yang, Q. Sun, R. Sivakumar, and Z. Peng. 2023. Pannexin 1 targets mitophagy to mediate renal ischemia/reperfusion injury. Commun Biol 6 (1): 889.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Farhadi, S.A., R. Liu, M.W. Becker, E.A. Phelps and G.A. Hudalla. 2021. Physical tuning of galectin-3 signaling. The Proceedings of the National Academy of Sciences U S A 118 (19). Farhadi, S.A., R. Liu, M.W. Becker, E.A. Phelps and G.A. Hudalla. 2021. Physical tuning of galectin-3 signaling. The Proceedings of the National Academy of Sciences U S A 118 (19).
Metadaten
Titel
Galectin-3 Mediates Endotoxin Internalization and Caspase-4/11 Activation in Tubular Epithelials and Macrophages During Sepsis and Sepsis-Associated Acute Kidney Injury
verfasst von
Fengyun Wang
Junwei Ye
Weiwei Zhu
Ruiqi Ge
Chang Hu
Yaoyao Qian
Yiming Li
Zhiyong Peng
Publikationsdatum
18.11.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2024
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01928-w

Weitere Artikel der Ausgabe 1/2024

Inflammation 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.