Skip to main content
Erschienen in: Inflammation 1/2023

09.08.2022 | Original Article

Convergence of Fructose-Induced NLRP3 Activation with Oxidative Stress and ER Stress Leading to Hepatic Steatosis

verfasst von: Sushmita Singh, Aditya Sharma, Shadab Ahmad, Bhavimani Guru, Farah Gulzar, Pawan Kumar, Ishbal Ahmad, Akhilesh K. Tamrakar

Erschienen in: Inflammation | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

High fructose flux enhances hepatocellular triglyceride accumulation (hepatic steatosis), which is a prime trigger in the emergence of hepatic ailments. Nevertheless, the pathophysiology underlying the process is not completely understood. Emerging evidences have revealed the inputs from multiple cues including inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in the development of hepatic steatosis. Here, we substantiated the role of NLRP3 inflammasome and its convergence with oxidative and ER stress leading to hepatic steatosis under high fructose diet feeding. Male SD rats were fed on 60% high fructose diet (HFrD) for 10 weeks and treated with antioxidant quercetin or NLRP3 inflammasome inhibitor glyburide during the last 6 weeks, followed by metabolic characterization and analysis of hepatic parameters. HFrD-induced hepatic steatosis was associated with the activation of NLRP3 inflammasome, pro-inflammatory response, oxidative, and ER stress in liver. Treatment with quercetin abrogated HFrD-induced oxidative stress, along with attenuation of NLRP3 activation in the liver. On the other hand, inhibition of NLRP3 signaling by glyburide suppressed HFrD-induced oxidative and ER stress. Both glyburide or quercetin treatment significantly attenuated hepatic steatosis, associated with mitigated expression of the lipogenic markers in liver. Our findings verified the association of NLRP3 inflammasome with oxidative and ER stress in fructose-induced lipogenic response and indicate that in addition to be a target of oxidative/ER stress, NLRP3 can act as a trigger for oxidative/ER stress to activate a vicious cycle where these cues act in a complex manner to propagate inflammatory response, leading to hepatic steatosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sanders, F.W.B., and J.L. Griffin. 2016. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biological reviews of the Cambridge Philosophical Society 91: 452–468.PubMedCrossRef Sanders, F.W.B., and J.L. Griffin. 2016. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biological reviews of the Cambridge Philosophical Society 91: 452–468.PubMedCrossRef
2.
Zurück zum Zitat Lim, J.S., M. Mietus-Snyder, A. Valente, J.M. Schwarz, and R.H. Lustig. 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature Reviews Gastroenterology & Hepatology 7: 251–264.CrossRef Lim, J.S., M. Mietus-Snyder, A. Valente, J.M. Schwarz, and R.H. Lustig. 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature Reviews Gastroenterology & Hepatology 7: 251–264.CrossRef
3.
Zurück zum Zitat Sanyal, A.J. 2019. Past, present and future perspectives in nonalcoholic fatty liver disease. Nature Reviews Gastroenterology & Hepatology 16: 377–386.CrossRef Sanyal, A.J. 2019. Past, present and future perspectives in nonalcoholic fatty liver disease. Nature Reviews Gastroenterology & Hepatology 16: 377–386.CrossRef
4.
Zurück zum Zitat Hu, Y., I. Semova, X. Sun, H. Kang, S. Chahar, A.N. Hollenberg, D. Masson, M.D. Hirschey, J. Miao, and S.B. Biddinger. 2018. Fructose and glucose can regulate mammalian target of rapamycin complex 1 and lipogenic gene expression via distinct pathways. Journal of Biological Chemistry 293: 2006–2014.PubMedCrossRef Hu, Y., I. Semova, X. Sun, H. Kang, S. Chahar, A.N. Hollenberg, D. Masson, M.D. Hirschey, J. Miao, and S.B. Biddinger. 2018. Fructose and glucose can regulate mammalian target of rapamycin complex 1 and lipogenic gene expression via distinct pathways. Journal of Biological Chemistry 293: 2006–2014.PubMedCrossRef
5.
Zurück zum Zitat Arrese, M., D. Cabrera, A.M. Kalergis, and A.E. Feldstein. 2016. Innate immunity and inflammation in NAFLD/NASH. Digestive Diseases and Sciences 61: 1294–1303.PubMedPubMedCentralCrossRef Arrese, M., D. Cabrera, A.M. Kalergis, and A.E. Feldstein. 2016. Innate immunity and inflammation in NAFLD/NASH. Digestive Diseases and Sciences 61: 1294–1303.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Zhang, X., J.H. Zhang, X.Y. Chen, Q.H. Hu, M.X. Wang, R. Jin, Q.Y. Zhang, W. Wang, R. Wang, L.L. Kang, J.S. Li, M. Li, Y. Pan, J.J. Huang, and L.D. Kong. 2015. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxidant & Redox Signalling 22: 848–870.CrossRef Zhang, X., J.H. Zhang, X.Y. Chen, Q.H. Hu, M.X. Wang, R. Jin, Q.Y. Zhang, W. Wang, R. Wang, L.L. Kang, J.S. Li, M. Li, Y. Pan, J.J. Huang, and L.D. Kong. 2015. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxidant & Redox Signalling 22: 848–870.CrossRef
7.
Zurück zum Zitat Wan, X., C. Xu, C. Yu, and Y. Li. 2016. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Canadian Journal of Gastroenterology and Hepatology 2016: 6489012.PubMedPubMedCentralCrossRef Wan, X., C. Xu, C. Yu, and Y. Li. 2016. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Canadian Journal of Gastroenterology and Hepatology 2016: 6489012.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Kelley, N., D. Jeltema, Y. Duan, and Y. He. 2019. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences 20: 3328.PubMedPubMedCentralCrossRef Kelley, N., D. Jeltema, Y. Duan, and Y. He. 2019. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences 20: 3328.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Sharma, M., and E.D. Alba. 2021. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. International Journal of Molecular Sciences 22: 872.PubMedPubMedCentralCrossRef Sharma, M., and E.D. Alba. 2021. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. International Journal of Molecular Sciences 22: 872.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Yu, X., L.P. Ren, C. Wang, Y.J. Zhu, H.Y. Xing, J. Zhao, and G.Y. Song. 2018. Role of X-box binding protein-1 in fructose-induced de novo lipogenesis in HepG2 cells. Chinese Medical Journal (Engl). 131: 2310–2319.PubMedCentralCrossRef Yu, X., L.P. Ren, C. Wang, Y.J. Zhu, H.Y. Xing, J. Zhao, and G.Y. Song. 2018. Role of X-box binding protein-1 in fructose-induced de novo lipogenesis in HepG2 cells. Chinese Medical Journal (Engl). 131: 2310–2319.PubMedCentralCrossRef
11.
Zurück zum Zitat Malhi, H., and R.J. Kaufman. 2011. Endoplasmic reticulum stress in liver disease. Journal of Hepatology 54: 795–809.PubMedCrossRef Malhi, H., and R.J. Kaufman. 2011. Endoplasmic reticulum stress in liver disease. Journal of Hepatology 54: 795–809.PubMedCrossRef
12.
Zurück zum Zitat Takaki, A., D. Kawai, and K. Yamamoto. 2013. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). International Journal of Molecular Sciences 14: 20704–20728.PubMedPubMedCentralCrossRef Takaki, A., D. Kawai, and K. Yamamoto. 2013. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). International Journal of Molecular Sciences 14: 20704–20728.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Minutoli, L., D. Puzzolo, M. Rinaldi, N. Irrera, H. Marini, V. Arcoraci, A. Bitto, G. Crea, A. Pisani, F. Squadrito, V. Trichilo, D. Bruschetta, A. Micali, and D. Altavilla. 2016. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Medicine and Cellular Longevity 2016: 2183026.PubMedPubMedCentralCrossRef Minutoli, L., D. Puzzolo, M. Rinaldi, N. Irrera, H. Marini, V. Arcoraci, A. Bitto, G. Crea, A. Pisani, F. Squadrito, V. Trichilo, D. Bruschetta, A. Micali, and D. Altavilla. 2016. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Medicine and Cellular Longevity 2016: 2183026.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Bauernfeind, F., E. Bartok, A. Rieger, L. Franchi, G. Nunez, and V. Hornung. 2011. Cutting edge: Reactive oxygen species inhibitors block priming, but not activation, of the nlrp3 inflammasome. Journal of Immunology 187: 613–617.CrossRef Bauernfeind, F., E. Bartok, A. Rieger, L. Franchi, G. Nunez, and V. Hornung. 2011. Cutting edge: Reactive oxygen species inhibitors block priming, but not activation, of the nlrp3 inflammasome. Journal of Immunology 187: 613–617.CrossRef
15.
Zurück zum Zitat Munoz-Planillo, R., P. Kuffa, G. Martinez-Colon, B.L. Smith, T.M. Rajendiran, and G. Nunez. 2013. K+ efflux is the common trigger of nlrp3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153.PubMedPubMedCentralCrossRef Munoz-Planillo, R., P. Kuffa, G. Martinez-Colon, B.L. Smith, T.M. Rajendiran, and G. Nunez. 2013. K+ efflux is the common trigger of nlrp3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Zhou, Y., Z. Tong, S. Jiang, W. Zheng, J. Zhao, and X. Zhou. 2020. The roles of endoplasmic reticulum in NLRP3 inflammasome activation. Cells 9: 1219.PubMedPubMedCentralCrossRef Zhou, Y., Z. Tong, S. Jiang, W. Zheng, J. Zhao, and X. Zhou. 2020. The roles of endoplasmic reticulum in NLRP3 inflammasome activation. Cells 9: 1219.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Buchanan, B.W., A.B. Mehrtash, C.L. Broshar, A.M. Runnebohm, B.J. Snow, L.N. Scanameo, M. Hochstrasser, and E.M. Rubenstein. 2019. Endoplasmic reticulum stress differentially inhibits endoplasmic reticulum and inner nuclear membrane protein quality control degradation pathways. Journal of Biological Chemistry 294: 19814–19830.PubMedPubMedCentralCrossRef Buchanan, B.W., A.B. Mehrtash, C.L. Broshar, A.M. Runnebohm, B.J. Snow, L.N. Scanameo, M. Hochstrasser, and E.M. Rubenstein. 2019. Endoplasmic reticulum stress differentially inhibits endoplasmic reticulum and inner nuclear membrane protein quality control degradation pathways. Journal of Biological Chemistry 294: 19814–19830.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Bronner, D.N., B.H. Abuaita, X. Chen, K.A. Fitzgerald, G. Nuñez, Y. He, X.M. Yin, and M.X.D. O’Riordan. 2015. Endoplasmic reticulum stress activates the inflammasome via NLRP3-and caspase-2-driven mitochondrial damage. Immunity 43: 451–462.PubMedPubMedCentralCrossRef Bronner, D.N., B.H. Abuaita, X. Chen, K.A. Fitzgerald, G. Nuñez, Y. He, X.M. Yin, and M.X.D. O’Riordan. 2015. Endoplasmic reticulum stress activates the inflammasome via NLRP3-and caspase-2-driven mitochondrial damage. Immunity 43: 451–462.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Collino, M., E. Benetti, M. Rogazzo, R. Mastrocola, M.M. Yaqoob, M. Aragno, et al. 2013. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation. Biochemical Pharmacology 85: 257–264.PubMedCrossRef Collino, M., E. Benetti, M. Rogazzo, R. Mastrocola, M.M. Yaqoob, M. Aragno, et al. 2013. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation. Biochemical Pharmacology 85: 257–264.PubMedCrossRef
21.
Zurück zum Zitat Gupta, A.P., P. Singh, R. Garg, G.R. Valicherla, M. Riyazuddin, A.A. Syed, Z. Hossain, and J.R. Gayen. 2019. Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomedicine & Pharmacotherapy 116: 108959.CrossRef Gupta, A.P., P. Singh, R. Garg, G.R. Valicherla, M. Riyazuddin, A.A. Syed, Z. Hossain, and J.R. Gayen. 2019. Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomedicine & Pharmacotherapy 116: 108959.CrossRef
22.
Zurück zum Zitat Verma, D.K., S. Gupta, J. Biswas, N. Joshi, A. Singh, P. Gupta, S. Tiwari, K.S. Raju, S. Chaturvedi, M. Wahajuddin, and S. Singh. 2018. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. BBA Molecular Basis of Disease 1864: 2078–2096.PubMedCrossRef Verma, D.K., S. Gupta, J. Biswas, N. Joshi, A. Singh, P. Gupta, S. Tiwari, K.S. Raju, S. Chaturvedi, M. Wahajuddin, and S. Singh. 2018. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. BBA Molecular Basis of Disease 1864: 2078–2096.PubMedCrossRef
23.
Zurück zum Zitat Bagul, P.K., H. Middela, S. Matapally, R. Padiya, T. Bastia, K. Madhusudana, B.R. Reddy, S. Chakravarty, and S.K. Banerjee. 2012. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacological Research 66: 260–268.PubMedCrossRef Bagul, P.K., H. Middela, S. Matapally, R. Padiya, T. Bastia, K. Madhusudana, B.R. Reddy, S. Chakravarty, and S.K. Banerjee. 2012. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacological Research 66: 260–268.PubMedCrossRef
24.
Zurück zum Zitat Ding, X.Q., W.Y. Wu, R.Q. Jiao, T.T. Gu, Q. Xu, Y. Pan, and L.D. Kong. 2018. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacological Research. 137: 64–75.PubMedCrossRef Ding, X.Q., W.Y. Wu, R.Q. Jiao, T.T. Gu, Q. Xu, Y. Pan, and L.D. Kong. 2018. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacological Research. 137: 64–75.PubMedCrossRef
25.
Zurück zum Zitat Le, K.A., and L. Tappy. 2006. Metabolic effects of fructose. Current Opinion in Clinical Nutrition and Metabolic Care 9: 469–475.PubMedCrossRef Le, K.A., and L. Tappy. 2006. Metabolic effects of fructose. Current Opinion in Clinical Nutrition and Metabolic Care 9: 469–475.PubMedCrossRef
26.
Zurück zum Zitat Jaiswal, N., C.K. Maurya, J. Pandey, A.K. Rai, and A.K. Tamrakar. 2015. Fructose-induced ROS generation impairs glucose utilization in L6 skeletal muscle cells. Free Radical Research 49: 1055–1068.PubMedCrossRef Jaiswal, N., C.K. Maurya, J. Pandey, A.K. Rai, and A.K. Tamrakar. 2015. Fructose-induced ROS generation impairs glucose utilization in L6 skeletal muscle cells. Free Radical Research 49: 1055–1068.PubMedCrossRef
27.
Zurück zum Zitat Hetz, C. 2012. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology 13: 89–102.PubMedCrossRef Hetz, C. 2012. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology 13: 89–102.PubMedCrossRef
28.
Zurück zum Zitat Lu, J., and A. Holmgren. 2013. The thioredoxin antioxidant system. Free Radical Biology and Medicine 66: 75–87.PubMedCrossRef Lu, J., and A. Holmgren. 2013. The thioredoxin antioxidant system. Free Radical Biology and Medicine 66: 75–87.PubMedCrossRef
29.
Zurück zum Zitat Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology. 11: 136–140.PubMedCrossRef Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology. 11: 136–140.PubMedCrossRef
30.
Zurück zum Zitat Zahid, A., B. Li, A.J.K. Kombe, T. Jin, and J. Tao. 2019. Pharmacological inhibitors of the NLRP3 inflammasome. Frontiers in Immunology 10: 2538.PubMedPubMedCentralCrossRef Zahid, A., B. Li, A.J.K. Kombe, T. Jin, and J. Tao. 2019. Pharmacological inhibitors of the NLRP3 inflammasome. Frontiers in Immunology 10: 2538.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Kim, G.N., and H.D. Jang. 2009. Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences 1171: 530–537.PubMedCrossRef Kim, G.N., and H.D. Jang. 2009. Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences 1171: 530–537.PubMedCrossRef
32.
Zurück zum Zitat Harijith, A., D.L. Ebenezer, and V. Natarajan. 2014. Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in Physiology 5: 352.PubMedPubMedCentralCrossRef Harijith, A., D.L. Ebenezer, and V. Natarajan. 2014. Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in Physiology 5: 352.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.PubMedCrossRef Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.PubMedCrossRef
34.
Zurück zum Zitat Todoric, J., G. Di Caro, S. Reibe, D.C. Henstridge, C.R. Green, A. Vrbanac, F. Ceteci, C. Conche, R. McNulty, S. Shalapour, K. Taniguchi, P.J. Meikle, J.D. Watrous, R. Moranchel, et al. 2020. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism 2: 1034–1045.PubMedPubMedCentralCrossRef Todoric, J., G. Di Caro, S. Reibe, D.C. Henstridge, C.R. Green, A. Vrbanac, F. Ceteci, C. Conche, R. McNulty, S. Shalapour, K. Taniguchi, P.J. Meikle, J.D. Watrous, R. Moranchel, et al. 2020. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism 2: 1034–1045.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Nomura, K., and T. Yamanouchi. 2012. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. Journal of Nutritional Biochemistry 23: 203–208.PubMedCrossRef Nomura, K., and T. Yamanouchi. 2012. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. Journal of Nutritional Biochemistry 23: 203–208.PubMedCrossRef
36.
Zurück zum Zitat Choe, J.Y., and S.K. Kim. 2017. Quercetin and ascorbic acid suppress fructose-induced NLRP inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines. Inflammation 40: 980–994.PubMedCrossRef Choe, J.Y., and S.K. Kim. 2017. Quercetin and ascorbic acid suppress fructose-induced NLRP inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines. Inflammation 40: 980–994.PubMedCrossRef
38.
Zurück zum Zitat Lebeaupin, C., E. Proics, C.H. de Bieville, D. Rousseau, S. Bonnafous, S. Patouraux, G. Adam, V.J. Lavallard, C. Rovere, O. Le Thuc, M.C. Saint-Paul, R. Anty, A.S. Schneck, A. Iannelli, J. Gugenheim, A. Tran, P. Gual, and B. Bailly-Maitre. 2015. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Disease 6: e1879.PubMedPubMedCentralCrossRef Lebeaupin, C., E. Proics, C.H. de Bieville, D. Rousseau, S. Bonnafous, S. Patouraux, G. Adam, V.J. Lavallard, C. Rovere, O. Le Thuc, M.C. Saint-Paul, R. Anty, A.S. Schneck, A. Iannelli, J. Gugenheim, A. Tran, P. Gual, and B. Bailly-Maitre. 2015. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Disease 6: e1879.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Chong, W.C., M.D. Shastri, and R. Eri. 2017. Endoplasmic reticulum stress and oxidative stress: A vicious nexus implicated in bowel disease pathophysiology. International Journal of Molecular Sciences 18: 771–780.PubMedPubMedCentralCrossRef Chong, W.C., M.D. Shastri, and R. Eri. 2017. Endoplasmic reticulum stress and oxidative stress: A vicious nexus implicated in bowel disease pathophysiology. International Journal of Molecular Sciences 18: 771–780.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Zhang, C., X. Chen, R.M. Zhu, Y. Zhang, T. Yu, H. Wang, H. Zhao, M. Zhao, Y.L. Ji, Y.H. Chen, X.H. Meng, W. Wei, and D.X. Xu. 2012. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicology Letters 212: 229–240.PubMedCrossRef Zhang, C., X. Chen, R.M. Zhu, Y. Zhang, T. Yu, H. Wang, H. Zhao, M. Zhao, Y.L. Ji, Y.H. Chen, X.H. Meng, W. Wei, and D.X. Xu. 2012. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicology Letters 212: 229–240.PubMedCrossRef
41.
Zurück zum Zitat Cho, I.J., D.H. Oh, J. Yoo, Y.C. Hwang, K.J. Ahn, H.Y. Chung, S.W. Jeong, J.Y. Moon, S.H. Lee, S.J. Lim, and I.K. Jeong. 2021. Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Scientific Reports 11: 9894.PubMedPubMedCentralCrossRef Cho, I.J., D.H. Oh, J. Yoo, Y.C. Hwang, K.J. Ahn, H.Y. Chung, S.W. Jeong, J.Y. Moon, S.H. Lee, S.J. Lim, and I.K. Jeong. 2021. Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Scientific Reports 11: 9894.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Wang, W., C. Wang, X.Q. Ding, Y. Pan, T.T. Gu, M.X. Wang, Y.L. Liu, F.M. Wang, S.J. Wang, and L.D. Kong. 2013. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. British Journal of Pharmacology 169: 1352–1371.PubMedPubMedCentralCrossRef Wang, W., C. Wang, X.Q. Ding, Y. Pan, T.T. Gu, M.X. Wang, Y.L. Liu, F.M. Wang, S.J. Wang, and L.D. Kong. 2013. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. British Journal of Pharmacology 169: 1352–1371.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Lerner, A.G., J.P. Upton, P.V. Praveen, R. Ghosh, Y. Nakagawa, A. Igbaria, S. Shen, V. Nguyen, B.J. Backes, M. Heiman, et al. 2012. Ire1alpha induces thioredoxin-interacting protein to activate the nlrp3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metabolism 16: 250–264.PubMedPubMedCentralCrossRef Lerner, A.G., J.P. Upton, P.V. Praveen, R. Ghosh, Y. Nakagawa, A. Igbaria, S. Shen, V. Nguyen, B.J. Backes, M. Heiman, et al. 2012. Ire1alpha induces thioredoxin-interacting protein to activate the nlrp3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metabolism 16: 250–264.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zhang, Y., X. Qu, H. Gao, J. Zhai, L. Tao, J. Sun, Y. Song, and J. Zhang. 2020. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. International Immunopharmacology 85: 106634.PubMedCrossRef Zhang, Y., X. Qu, H. Gao, J. Zhai, L. Tao, J. Sun, Y. Song, and J. Zhang. 2020. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. International Immunopharmacology 85: 106634.PubMedCrossRef
45.
Zurück zum Zitat Chanjitwiriya, K., S. Roytrakul, and D. Kunthalert. 2020. Quercetin negatively regulates IL-1beta production in Pseudomonas aeruginosa-infected human macrophages through the inhibition of MAPK/NLRP3 inflammasome pathways. PLoS ONE 15: e0237752.PubMedPubMedCentralCrossRef Chanjitwiriya, K., S. Roytrakul, and D. Kunthalert. 2020. Quercetin negatively regulates IL-1beta production in Pseudomonas aeruginosa-infected human macrophages through the inhibition of MAPK/NLRP3 inflammasome pathways. PLoS ONE 15: e0237752.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Hu, Q.H., X. Zhang, Y. Pan, Y.C. Li, and L.D. Kong. 2012. Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochemical Pharmacology 84: 113–125.PubMedCrossRef Hu, Q.H., X. Zhang, Y. Pan, Y.C. Li, and L.D. Kong. 2012. Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochemical Pharmacology 84: 113–125.PubMedCrossRef
47.
Zurück zum Zitat Yang, X., C. Qu, J. Jia, and Y. Zhan. 2019. NLRP3 inflammasome inhibitor glyburide expedites diabetic-induced impaired fracture healing. Immunobiology 224: 786–791.PubMedCrossRef Yang, X., C. Qu, J. Jia, and Y. Zhan. 2019. NLRP3 inflammasome inhibitor glyburide expedites diabetic-induced impaired fracture healing. Immunobiology 224: 786–791.PubMedCrossRef
48.
Zurück zum Zitat Liu, L., Y. Dong, M. Ye, S. Jin, J. Yang, M.E. Joosse, Y. Sun, J. Zhang, M. Lazarev, S.R. Brant, B. Safar, M. Marohn, E. Mezey, and X. Li. 2017. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. Journal of Crohn’s and Colitis 11: 737–750.PubMedPubMedCentral Liu, L., Y. Dong, M. Ye, S. Jin, J. Yang, M.E. Joosse, Y. Sun, J. Zhang, M. Lazarev, S.R. Brant, B. Safar, M. Marohn, E. Mezey, and X. Li. 2017. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. Journal of Crohn’s and Colitis 11: 737–750.PubMedPubMedCentral
Metadaten
Titel
Convergence of Fructose-Induced NLRP3 Activation with Oxidative Stress and ER Stress Leading to Hepatic Steatosis
verfasst von
Sushmita Singh
Aditya Sharma
Shadab Ahmad
Bhavimani Guru
Farah Gulzar
Pawan Kumar
Ishbal Ahmad
Akhilesh K. Tamrakar
Publikationsdatum
09.08.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01727-9

Weitere Artikel der Ausgabe 1/2023

Inflammation 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.