Skip to main content
Erschienen in: The International Journal of Cardiovascular Imaging 9/2023

Open Access 05.07.2023 | Original Paper

Comparison of definitions of coronary artery reference sizes and effects on stent selection and evaluation of stent expansion

verfasst von: Lene Nyhus Andreasen, Evald Høj Christiansen, Lone Juul Hune Mogensen, Niels Ramsing Holm

Erschienen in: The International Journal of Cardiovascular Imaging | Ausgabe 9/2023

Abstract

Accurate determination of coronary reference size is essential for optimal stent selection and evaluation of stent expansion during percutaneous coronary intervention (PCI). Several approaches for reference size estimation have been published with no universal agreement. The aim of this study was to investigate if potential differences in coronary reference size estimation lead to differences in stent and balloon selection and in detection of stent under expansion. Definitions for coronary reference size estimation, stent size selection, and stent expansion were identified in 17 randomized controlled trials. The identified methods were applied in a population of 32 clinical cases. Reference size estimates ranged up to 1.35mm, and indicated nominal stent size ranged up to 1.0 mm in the same case depending on method. Mean relative stent expansion ranged from 54±12% to mean 100±29% depending on the applied reference method. Choice of method for reference size estimation using intravascular imaging may influence stent selection and greatly affects evaluation of post-PCI stent expansion.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s10554-023-02890-2.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Estimation of coronary artery reference sizes is crucial for planning and evaluation of percutaneous coronary intervention (PCI). At present, most procedures are guided by visual estimation of the reference vessel size. This method suffers from angiographic ambiguity, lack of vessel wall information, out of plane magnification, and is highly operator dependent [1].
Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) are increasingly used for procedural guiding during PCI [2]. Both imaging modalities allow for detailed and precise evaluation of coronary artery dimensions [2, 3]. Coronary atherosclerosis is frequently shown by IVUS and OCT to be more extensive than it appears by angiography and hence, determination of the reference size may differ if assessed by IVUS and OCT compared with angiography [4, 5].
Accurate determination of reference size is crucial for optimal stent selection and in verification of stent expansion which is strongly correlated to clinical outcome [6, 7]. Definitions for imaging guided stent selection and optimal stent expansion are not firmly established and differ substantially between guidelines, consensus papers and several study designs [3, 811]. The aim of this study was to evaluate if different methods for coronary reference size estimation exist and if potential differences could lead to differences in stent size selection and in evaluation of stent expansion.

Methods

This study comprised (1) identification of published reference methods, and (2) comparison of identified methods in a clinical dataset.

Published reference methods, stent size selection and definitions of stent expansion

A systematic search was performed in Medline to identify published randomized control trials (RCT) using drug eluting stent (DES) and either (1) IVUS-guided PCI vs. angiography-guided PCI, (2) IVUS-guided PCI vs. OCT-guided PCI, (3) IVUS-guided PCI vs. OCT-guided PCI vs. angio-guided PCI, or (4) OCT-guided PCI vs. angiography-guided PCI.
Methods for measuring coronary reference size, stent size selection, and optimal stent expansion criteria were extracted from identified studies.

Analyzed population

The identified methods for reference estimations, stent size selection and expansion calculation were applied and evaluated in a population of clinical cases. A total of 32 cases with pre-PCI and post-PCI OCT from the DOCTOR Fusion study and the SORT OUT VII OCT sub-study were available for analysis [12, 13]. DOCTOR Fusion was a prospective, observational study evaluating an early application for co-registration of OCT scans and coronary angiography [12]. SORT OUT VII OCT was a randomized, comparison of two different drug-eluting-stents in patients with stable coronary artery disease or acute coronary syndrome [13]. Both studies were approved by The Central Denmark Region Committees on Health Research Ethics and all patients provided written informed consent.

Optical coherence tomography (OCT)

OCT recordings were acquired using the Abbott OCT system (Ilumien or Ilumien OPTIS) after intracoronary administration of nitroglycerin. Pullback speed was either 18 mm/sec or 36 mm/sec and pullback length was 54 or 75 mm. Corresponding OCT recordings acquired pre and post-PCI were matched using stent edges and side branches (SB) as landmarks. All cases were analyzed offline using the Aptivue offline OCT analysis system (Abbott, US).

Comparison of reference size methods

Pre-PCI and post-PCI OCT recordings were matched on frame level. All identified reference estimation methods were performed with measurements distal and proximal to the matched pre-PCI stent segment and post-PCI stent segment.
Reference size estimations were excluded if (1) the stent edge was located at a large SB take-off (diameter ≥ 2 mm), (2) the edge was not visible due to unflushed blood, or (3) the edge was not visible due to the guiding catheter positioned inside the proximal end of the stent. All analyses were performed by the same highly experienced observer[13, 14].

Comparison of methods for evaluation of stent expansion

Identified definitions for optimal stent expansion were applied in analysis of the 32 clinical cases. Minimal stent area (MSA) and minimal stent diameter (MSD) were measured in a segmental fashion as either (1) a single measurement of MSA and MSD for the entire stent-segment, (2) MSA and MSD for each segment when the stent-segment was divided into two equal halves, or (3) MSA and MSD for each segment when the stent-segment was divided by a large SB (≥ 2 mm) branch point (Fig. 1c).
For calculation of stent expansion the following reference values were used, either (1) the distal reference alone, or (2) the mean of the distal – and proximal references, and in turn from either (1) pre-PCI reference estimations, or (2) post-PCI reference size estimations. The relative expansion value was calculated as: \(100 x \frac{Minimal stent area \left(MSA\right)}{Reference area}\) or: \(100 x \frac{Minimal stent diameter \left(MSD\right)}{Rederence diameter}\) .

Statistics

Continuous variables are presented as mean ± standard deviation (normal distribution) or median + interquartile range (IQR) (non-normal distribution). Categorical variables are shown as absolute number and percentages. Bland-Altman plots including 95% limits of agreement was used to illustrate and assess the agreement and variation between different methods. One-way repeated measures ANOVA was performed to determine if there were differences between means for reference size and stent expansion methods. Maychly’s test was used to test if the assumption of sphericity, i.e. the variances of the differences between all combinations of related groups must be equal, was violated. In case of violation, the Greenhouse-Geisser correction was used. In selected cases, two methods were compared using Student’s paired t-test or Wilcoxon test as appropriate according to distribution of data. Statistical analyses were performed using STATA version 17 (Stata Inc. College Station, TX).

Results

A total of 17 RCTs were identified; 9 studies comparing IVUS-guided with angiography-guided PCI [1523], 2 studies comparing IVUS-guided with OCT-guided PCI [10, 24], a single study comparing IVUS-guided and OCT-guided with angio-guided PCI [8], and 5 studies comparing OCT-guided PCI with angiography-guided PCI [2, 9, 2527]. Of these, two studies are ongoing (OCTOBER [9] and ILUMIEN IV [27] (Table 1, supplementary table).
Table 1
Overview of different stent selection criteria
 
Distal measurement only
Distal or proximal measurement
Mean of distal and proximal
Unspecific
 
Distal ref. size (study specific down and up-sizing)
Distal media (ratio 0:8)
Distal lumen (ratio 1:1)
Distal OR prox. (the smallest) EEL, if EEL ≥ 180°
Distal OR prox. lumen (the smallest) if EEL visible < 180°
Distal + prox. EEL
Distal + prox. Lumen
Stent/vessel diameter 0.8:1
Ref. Vessel diameter
NA
QCA
HOME DES IVUS, 2010
         
x
 
Habara et al. 2013
      
x
   
x *
The AVIO Trial, 2013
         
x
 
CTO-IVUS, 2015
         
x
 
AIR-CTO, 2015
       
x
   
IVUS XPL, 2015
         
x
 
OCTACS, 2015
          
x
RESET, 2015
         
x
 
Tan et al. 2015
         
x
 
Zhang et al. 2016
          
x
ILUMIEN III, 2016
   
x
x
      
DOCTORS, 2016
        
x
  
OCT STEMI, 2017
          
x
OPINION, 2017
     
x
x
    
ULTIMATE, 2018
 
x
x
        
ILUMIEN IV Trial
x
          
OCTOBER Trial
x
          
*second line, NA: Not available, QCA: Quantitative coronary angiography

Coronary reference size

A total of 12 different reference size definitions were identified in 17 clinical studies (Table 2, supplementary table).
Table 2
Overview on “optimal stent expansion” and “cut-off values”
 
NA
Absolute value
MSA to distal pre lumen area
MSA to distal post lumen area
MSA to distal lumen area (pre/post unknown)
Respective MSA to respective post lumen area
Respective MLD to respective pre media-reference
MSA to mean pre lumen area
MSA to mean post lumen area
MSA to mean lumen area (pre/post unknown)
MSA to ref. area (distal/prox. & pre/post unknown)
Specific study criteria
MSA ≥ 95%
MSA ≥ 90%
MSA > 80%
MSA > 70%
MSA > distal reference
NA
HOME DES IVUS, 2010
 
x
 
x
         
x
    
Habara et al. 2013
  
x
          
x
 
x
  
The AVIO trial, 2013
           
x
    
x
 
CTO-IVUS, 2015
    
x
           
x
 
AIR-CTO, 2015
          
x
   
x
   
IVUS-XPL, 2015
    
x
           
x
 
OCTACS, 2015
        
x
         
RESET, 2013
          
x
      
x
Tan et al., 2015
       
x
     
x
    
Zhang et al., 2016
x
                
x
ILUMIEN III, 2016
     
x
      
x
x
    
DOCTORS 2016
          
x
   
x
   
OCT STEMI, 2017
  
x
    
x
     
x
x
   
OPINION, 2017
         
x
   
x
    
ULTIMATE, 2018
 
x
  
x
        
x
    
ILUMIEN IV Trial
     
x
       
x
    
OCTOBER Trial
      
x
      
x
    
MSA: minimal stent area. NA: Not available

Stent selection criteria

An overview of identified stent selection criteria are shown in Table 1.

Optimal stent expansion criteria

Table 2 presents an overview of the definitions for “optimal expansion” defined in the 17 clinical studies

Comparison of reference methods

A total of 10 different reference methods were applied in the 32 study cases (Fig. 1a-b). The distal, proximal and mean reference values are presented in Table 3.
Table 3
Reference estimations using different positions and methods and results of minimal stent expansion calculations
Table 3
Distal reference
Proximal reference
Mean (average distal + proximal)
Pre-PCI reference estimations
N
Diameter (mm)
N
Diameter (mm)
N
Diameter (mm)
1) Corresponding lumen
31
2.91 ± 0.77
26
2.99 ± 0.66
25
2.93 ± 0.64
2) Largest lumen within 0-5 mm
31
3.05 ± 0.73
26
3.32 ± 0.70
25
3.14 ± 0.65
3) Corresponding fitted media circle
30
3.58 ± 0.83
20
3.82 ± 0.68
19
3.68 ± 0.71
4) Best fitted media-circle 0-10 mm
31
3.59 ± 0.80
25
4.01 ± 0.70
24
3.75 ± 0.68
5) Best media-media 0-10 mm
31
3.52 ± 0.79
26
4.04 ± 0.74
25
3.73 ± 0.69
One-way repeated ANOVA
 
P < 0.005
 
P < 0.005
 
P < 0.005
Post-PCI reference estimation
      
6) Stent edge
32
3.01 ± 0.68
29
3.23 ± 0.52
29
3.12 ± 0.56
7) Largest lumen within 0-5 mm
32
3.11 ± 0.65
29
3.45 ± 0.65
29
3.28 ± 0.61
8) Largest lumen within 2-10 mm
30
2.97 ± 0.61
20
3.56 ± 0.75
19
3.35 ± 0.65
9) Best fitted media-circle 2-10 mm
30
3.59 ± 0.79
20
4.34 ± 0.76
19
4.01 ± 0.73
10) Best media-media 2-10 mm
30
3.50 ± 0.74
20
4.26 ± 0.76
19
3.93 ± 0.71
One-way repeated ANOVA
 
P < 0.005
 
P < 0.005
 
P < 0.005
 
Distal part
Proximal part
One single stent segment
Minimal stent lumen
N
Minimal stent diameter
Minimal stent area
N
Minimal stent diameter
Minimal stent area
N
Minimal stent diameter
Minimal stent area
Separated in halves
32
2.86 ± 0.49
6.64 ± 2.24
31
2.95 ± 0.55
7.10 ± 2.69
32
2.81 ±
0.50
6.31 ±
2.31
Separated by SB > 2 mm
15
2.88 ± 0.50
6.74 ± 2.20
12
3.05 ± 0.46
7.51 ± 2.32
-
-
-
Reference estimations using different positions and methods and results of minimal stent expansion calculations. P-values are results from the one-way ANOVA analyze. MSA: Minimal stent area. MSD: Minimal stent diameter. PCI: Percutaneous coronary intervention. SB: Side branch

Pre PCI reference size methods

Smallest diameter reference size was achieved by the pre-PCI distal stent edge lumen (Method 1) (2.91 mm ± 0.77 mm), and the largest diameter reference size was derived by the pre-PCI proximal media-to-media distance (Method 5) (4.04 mm ± 0.74 mm). One-way repeated measures ANOVA for means of the references methods performed at the distal position, at the proximal position and a mean of two all showed statistical significant differences between the 5 methods (distal p < 0.001, proximal: p < 0.001, mean: p < 0.001). Selected Bland-Altman plots with key comparison of methods are presented in Fig. 2 (method 1 and 3 (references measured at the same frame position), method 3 and 5 (both references are media-media estimations but at different reference position) and method 1 and 5 (different reference estimation and position).

Post-PCI evaluation of reference size methods

Reference size estimates after stenting (post-PCI) ranged according to method from 2.97 mm ± 0.61 mm (distal, largest lumen within 2-10 mm from stent edge (Method 8)) to 4.34 mm ± 0.76 mm (proximal best fitted media contour 2-10 mm from stent edge (Method 9)). Results from the one-way repeated measures ANOVA analysis for the post-PCI distal references, the post-PCI proximal references and the mean of the post-PCI distal and proximal references all showed statistical significant differences between methods ( p < 0.001, p < 0.001, p < 0.001). When measuring the reference size within a distance 0-10 mm from the stent edge, the largest lumen was found just at the stent edge in 47% (distal) and 41% (proximal) of analyzed cases. Bland-Altman plot for selected references methods are shown in supplementary Fig. 1).

Comparison of reference size estimated pre - and post PCI

Pre-PCI edge lumen size (Method 1) and pre-PCI media contour size (Method 3) were measured at the same vessel position as the post-PCI edge lumen size (Method 6). The reference diameter size pre-PCI was larger for the media based estimations: distal: ∆0.71 mm ± 0.33 mm, p < 0.05 (n = 30), proximal: ∆0.81 mm ± 0.42 mm, p < 0.05 (n = 20), mean: ∆0.76 mm ± 0.28 mm, p < 0.05 (n = 25). The differences of the two lumen diameter size estimations (pre-PCI matched stent edge (Method 1) and post-PCI stent edge (Method 6) were: distal ∆0.08 mm ± 0.29 mm, p = 0.13 (n = 31), proximal: ∆0.23 mm ± 0.29, p < 0.05 (n = 26), and mean: ∆0.17 ± 0.19, p < 0.05 (n = 25). Post-PCI stent edge was larger than pre-PCI matched stent edge in all three references positions (Table 3).

Post-PCI evaluation of stent expansion by a single MSA/MSD measurement

Figure 3 show box-plots of the mean expansion calculated by a single MSA – or MSD measurement from the entire stented segment and either (1) a distal reference estimation (Figs. 2b and 3a) or (2) the mean reference estimation (Figs. 2d and 3c). Expansion results are presented using 5 selected reference methods: (1) pre-PCI matched stent edge lumen (Fig. 1a1, Fig. 3 blue boxes), (2) pre-PCI largest lumen within 0-5 mm from stent edge (Fig. 1a2, Fig. 3 purple boxes), (3) post-PCI stent edge lumen (Fig. 1b6, Fig. 3 green boxes), (4) post-PCI largest lumen within 0-5 mm from stent edge (Fig. 1b7, Fig. 3 orange boxes), and (5) pre-PCI best fitted media contour within 0-10 mm from matched stent edge (Fig. 1a4, Fig. 3 grey boxes).
The largest relative expansion was shown by evaluating MSA in relation to a reference size obtained as a lumen area at the distal pre-PCI stent edge position (mean: 100% ± 29%) (Fig. 3a, blue box). The smallest relative expansion was shown using MSA and the mean of the proximal and the distal reference measured from the pre-PCI OCT-run as best fitted media contour within 0–10 mm from stent edge (mean: 54%±12%) (Fig. 3c, grey box). Results of the one-way ANOVA analysis all showed statistically significant difference between methods (p < 0.05).
Area based estimation of expansion in percent (Fig. 3a and 3c), indicated lower degree of expansion than diameter-based assessment in the same cases (Fig. 3b and d). The largest difference was found in analysis of the pre-PCI media contour (area-based expansion: 54% ±12% (Fig. 3c, grey box), diameter-based expansion: 74%±8%) (Fig. 3d, grey box).

Segmental post-PCI evaluation of stent expansion

Post-PCI evaluation of stent expansion. Segmental evaluation with step down

A SB with diameter ≥ 2.0 mm in the lesion segment was found in 14/32 (43.8%) cases. Obtaining two values for MSA (one per segment) when the stented segment was divided by the SB was feasible in 12/14 cases. Comparing these values with values when the same lesion segment was divided into two equally long segments changed distal MSA to be larger in 2 of 12 cases (6.4mm2 vs. 7.2mm2 and 6.0mm2 vs. 7.8mm2), resulting in a larger expansion value (supplementary Fig. 2, grey and purple dots). The proximal MSA measurements were changed in 7/12 cases (MSA smaller in 6/7 cases; larger in 1/7 cases) also resulting in differences in expansion calculations (supplementary Fig. 2).

Discussion

This study compared published reference size methods for intravascular imaging and their possible effects on stent size selection and evaluation of stent expansion. We found that different reference methods lead to (1) major differences in estimated reference size, (2) possible differences in selection in stent size, and (3) major differences in evaluation and classification of post PCI stent expansion.

Pre-PCI planning of the procedure – selection of stent - and balloon sizes

A main difference in reference methods was seen when 31 lumen-based estimations were compared to media-layer derived estimations ranging from mean 2.91 mm to mean 4.04 mm, respectively (Table 3).
The majority of identified studies recommended using a distal reference estimation for stent sizing. We found that media-based methods would result in selection of stents median 0.5 mm larger than lumen-based reference methods. Choosing the mean of the proximal and distal reference the stent selection was on average 0.75 mm larger based on media compared to lumen-based methods. Lumen size estimations neglect the regular age-related changes in vessel morphology [28]. Such frequent changes in the reference segments includes intimal thickening, positive vessel remodeling and formation of calcific, and lipid rich plaques [5]. Using angiographic visual estimation provides limited information about potential plaque burden in the reference segment or vessel wall remodeling [5]. A study by Mintz et al. showed that only 60% of 884 angiographically normal reference segments were normal when evaluated by IVUS [5]. In this regard, both angiographic visual estimation and imaging guided lumen based reference methods may frequently lead to undersized stent selection and too small expansion goals. Some clinical studies mandated to select stent size based only on the largest lumen, without evaluation of the vessel morphology [18]. A large lumen by coronary angiography could still have plaque or be a post-stenotic lumen enlargement with positive vessel remodeling [29]. Incorrect reference size estimation of more than 0.5 mm could lead to suboptimal implantation result with potential clinical impact. A particular issue is the selection of a stent platform where the maximal achievable stent dimensions are not sufficient for optimal stent expansion.
Recent imaging-guided studies aimed to overcome the limitations with lumen-based reference sizing by measurements defined by the external elastic lamina (EEL). Defining the media layer and not specifically the media-adventitia transition (EEL) was selected in this study due to a reasonable higher in-procedure feasibility and a limited error between the two definitions estimated to 0.10-0.15 mm. IVUS and OCT are in many ways similar in their capacity to define the different vessel layers, plaque types and stent dimensions. However, several key differences do exist [30]; with an image resolution of 10 μm, OCT has 10 times greater resolution compared with IVUS (20-40 μm), while the tissue penetration by OCT is limited (OCT: 1-2 mm, IVUS: 3-8 mm), in particular in presence of lipid plaques [31]. Due to the high attenuation of lipid limiting the media detection behind lipid plaque it was proposed that EEL/media estimations are only feasible using IVUS compared with OCT [10]. The ILUMIEN III study found that physicians were able to identify EEL > 180 degrees in-procedure using OCT in 84% of cases. The EEL was detected in 95% of OCT cases during subsequent corelab analysis. The higher spatial resolution of OCT in combination with required blood clearance offers a clear interface between healthy-looking segments and non-healthy looking segments [32]. The in-procedure feasibility of the individual reference methods may vary according to presence of thrombus or the level and composition of plaque in the reference segment. Such mechanisms should be clarified in future clinical evaluation of in-procedure reference size estimation.

Post PCI evaluation of stent implantation – evaluation of stent expansion

Multiple definitions of “optimal stent expansion” have been proposed (Table 2). Stent underexpansion is an important known risk factor for stent failure. Hence, optimal and feasible evaluation of stent expansion is therefore of particular importance [6]. Expansion is assessed using either an absolute in-stent minimal stent area or diameter, or as a relative value expressed as minimal stent area/diameter to a reference size estimate.
Although expansion criteria by absolute values have been applied in several studies [15, 26, 33, 34], the strategy is infeasible when treating small vessels (< 2.5 mm) and may allow for accepting stents with expansion substantially below the reference size in large vessels. The NOBLE IVUS substudy indicated that relative rather than absolute expansion values predict prognosis in large vessels including the left main coronary artery [35]. The present study showed that evaluation of expansion as a relative value depends on the selected reference size estimation method. This includes which reference/references to use for calculation: (1) the distal or the mean of the distal and the proximal references, (2) lumen or media/EEL reference estimation or (3) area or diameter reference estimations, but also if one segment or divided segments should be used. Even with an optimal reference size, the threshold for optimal expansion is not firmly established with 80% and 90% expansion limits applied in investigated studies.

Expansion by pre- or post-PCI reference estimations

Two ongoing large-scale randomized control trials (ILUMIEN IV Trial [27] and the OCTOBER Trial [9]) are both evaluating routine OCT guidance for stenting complex coronary lesions. The studies apply different approaches for evaluation of stent expansion. Stent expansion in the ILUMIEN IV trial is defined by MSA to the post PCI lumen area. In the OCTOBER trial expansion is evaluated by MSA to the pre-PCI reference estimation. This study showed that such very important difference in definitions can result in difference in post-PCI evaluation of expansion ranging from 100 to 64% in the same case. Selecting a reference vessel segment is not trivial. The vessel lumen immediate next to the post-PCI stent could be influenced by stent overexpansion, geographical miss, plaque shift or coronary artery dissection [36, 37]. In this study ≈ 40% of cases showed the largest post-PCI OCT lumen just at the stent boarder, indicating that the edge segment closest to the stent was influenced by the stent-implantation. Using a reference measured as post-PCI stent edge lumen for evaluation of stent expansion therefore may result in a larger reference-value and a smaller expansion in comparison to the corresponding pre-PCI lumen. Numerous trials reviewed in this study did not state whether pre- or post-reference estimations were used for expansion evaluation [17, 19, 23, 24, 36, 38].

Expansion – area or diameter

Most studies evaluate the expansion in relation to area-estimations. However, the clinical feasibility in calculating % of an area seems offhand limited and inconvenient when compared to % of diameter. Since percentages of an area cannot be transferred directly to percentages of diameter (e.g. \({0.90 x\left(\frac{d}{2}\right)}^{2}x \pi \ne\)\({\left(\frac{0.9 x d}{2}\right)}^{2}x \pi\)), physicians must be careful not to transfer cut-off values based on an area-protocol to a diameter-protocol.
Our findings indicate that reference methods (1) should be vessel and not lumen-based, (2) should be applicable to long lesions with major diameter shifts, (3) should identify reference segments more than 2 mm from the stent edge, and (4) potentially be based on diameters to provide more actionable measurements for selecting balloons sizes. The post hoc nature and limited number of cases in this study do not allow for firm conclusions. It is important to establish a future consensus based on clinical outcome data expected from ongoing randomized trials.

Limitations

Retrospective analyses are inherently limited by the fact that included data was collected for a different purpose. Measurements were performed in a core laboratory setting and not during angiographic procedures. Thus, it is unknown if the applied corelab analysis resemble measurements performed quickly during a procedure. The theoretic choice of stent size was performed according to established criteria but could differ from decisions made by treating physicians. Matching of pre - and post -PCI OCT-scans is limited by cardiac motion artifacts known to occur in 20–30% of cases [39]. To reduce this inherent limitation, visual confirmation of matched cross sections was performed by an experienced OCT observer.

Conclusion

Differences in published methods for in-procedure analysis of intravascular imaging leads to major and concerning differences in coronary reference size, stent diameter selection, and in evaluation of stent expansion.

Statements and Declarations

Competing interests

Evald Høj Christiansen has received speaker fees from Abbott and institutional research grants from Abbott. Niels Ramsing Holm has received speaker fees from Abbott and Terumo and institutional research grants from Abbott, Medis and Boston Scientific. Lene Nyhus Andreasen and Lone Juul Hune Mogensen have no relevant financial or non-financial interests to disclose.

Ethics approval

This study included imaging-analyses from patients enrolled in two clinical studies. Both studies were approved by The Central Denmark Region Committees on Health Research Ethics and all patients provided written informed consent.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Baumgart D, Haude M, Birgelen Cv CV, Ge J, Gorge G, Erbel R (1999) Assessment of ambiguous coronary lesions by intravascular ultrasound. Int J Cardiovasc Intervent 2(1):3–12CrossRefPubMed Baumgart D, Haude M, Birgelen Cv CV, Ge J, Gorge G, Erbel R (1999) Assessment of ambiguous coronary lesions by intravascular ultrasound. Int J Cardiovasc Intervent 2(1):3–12CrossRefPubMed
2.
Zurück zum Zitat Ali ZA, Karimi Galougahi K, Maehara A, Shlofmitz RA, Ben-Yehuda O, Mintz GS, Stone GW (2017) Intracoronary Optical Coherence Tomography 2018: current status and future directions. JACC Cardiovasc Interv 10(24):2473–2487CrossRefPubMed Ali ZA, Karimi Galougahi K, Maehara A, Shlofmitz RA, Ben-Yehuda O, Mintz GS, Stone GW (2017) Intracoronary Optical Coherence Tomography 2018: current status and future directions. JACC Cardiovasc Interv 10(24):2473–2487CrossRefPubMed
3.
Zurück zum Zitat Raber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR, Onuma Y, Radu MD, Joner M, Yu B, Jia H, Meneveau N, de la Hernandez JM, Escaned J, Hill J, Prati F, Colombo A, di Mario C, Regar E, Capodanno D, Wijns W, Byrne RA, Guagliumi G (2018) Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J 39(35):3281–3300CrossRefPubMed Raber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR, Onuma Y, Radu MD, Joner M, Yu B, Jia H, Meneveau N, de la Hernandez JM, Escaned J, Hill J, Prati F, Colombo A, di Mario C, Regar E, Capodanno D, Wijns W, Byrne RA, Guagliumi G (2018) Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J 39(35):3281–3300CrossRefPubMed
4.
Zurück zum Zitat Regar E, Ligthart J, Bruining N, van Soest G (2011) Diagn value intracoronary Opt coherence tomography Herz 36(5):417–429 Regar E, Ligthart J, Bruining N, van Soest G (2011) Diagn value intracoronary Opt coherence tomography Herz 36(5):417–429
5.
Zurück zum Zitat Mintz GS, Painter JA, Pichard AD, Kent KM, Satler LF, Popma JJ, Chuang YC, Bucher TA, Sokolowicz LE, Leon MB (1995) Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 25(7):1479–1485CrossRefPubMed Mintz GS, Painter JA, Pichard AD, Kent KM, Satler LF, Popma JJ, Chuang YC, Bucher TA, Sokolowicz LE, Leon MB (1995) Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 25(7):1479–1485CrossRefPubMed
6.
Zurück zum Zitat Fujii K, Carlier SG, Mintz GS, Yang YM, Moussa I, Weisz G, Dangas G, Mehran R, Lansky AJ, Kreps EM, Collins M, Stone GW, Moses JW, Leon MB (2005) Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol 45(7):995–998CrossRefPubMed Fujii K, Carlier SG, Mintz GS, Yang YM, Moussa I, Weisz G, Dangas G, Mehran R, Lansky AJ, Kreps EM, Collins M, Stone GW, Moses JW, Leon MB (2005) Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol 45(7):995–998CrossRefPubMed
7.
Zurück zum Zitat Prati F, Romagnoli E, Burzotta F, Limbruno U, Gatto L, La Manna A, Versaci F, Marco V, Di Vito L, Imola F, Paoletti G, Trani C, Tamburino C, Tavazzi L, Mintz GS (2015) Clinical impact of OCT findings during PCI: the CLI-OPCI II study. JACC Cardiovasc Imaging 8(11):1297–1305CrossRefPubMed Prati F, Romagnoli E, Burzotta F, Limbruno U, Gatto L, La Manna A, Versaci F, Marco V, Di Vito L, Imola F, Paoletti G, Trani C, Tamburino C, Tavazzi L, Mintz GS (2015) Clinical impact of OCT findings during PCI: the CLI-OPCI II study. JACC Cardiovasc Imaging 8(11):1297–1305CrossRefPubMed
8.
Zurück zum Zitat Ali ZA, Maehara A, Genereux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, Guagliumi G, Meraj PM, Alfonso F, Samady H, Akasaka T, Carlson EB, Leesar MA, Matsumura M, Ozan MO, Mintz GS, Ben-Yehuda O, Stone GW (2016) Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388(10060):2618–2628CrossRefPubMed Ali ZA, Maehara A, Genereux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, Guagliumi G, Meraj PM, Alfonso F, Samady H, Akasaka T, Carlson EB, Leesar MA, Matsumura M, Ozan MO, Mintz GS, Ben-Yehuda O, Stone GW (2016) Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388(10060):2618–2628CrossRefPubMed
9.
Zurück zum Zitat Holm NR, Andreasen LN, Walsh S, Kajander OA, Witt N, Eek C, Knaapen P, Koltowski L, Gutierrez-Chico JL, Burzotta F, Kockman J, Ormiston J, Santos-Pardo I, Laanmets P, Mylotte D, Madsen M, Hjort J, Kumsars I, Ramunddal T, Christiansen EH (2018) Rational and design of the european randomized Optical Coherence Tomography Optimized Bifurcation Event Reduction Trial (OCTOBER). Am Heart J 205:97–109CrossRefPubMed Holm NR, Andreasen LN, Walsh S, Kajander OA, Witt N, Eek C, Knaapen P, Koltowski L, Gutierrez-Chico JL, Burzotta F, Kockman J, Ormiston J, Santos-Pardo I, Laanmets P, Mylotte D, Madsen M, Hjort J, Kumsars I, Ramunddal T, Christiansen EH (2018) Rational and design of the european randomized Optical Coherence Tomography Optimized Bifurcation Event Reduction Trial (OCTOBER). Am Heart J 205:97–109CrossRefPubMed
10.
Zurück zum Zitat Habara M, Nasu K, Terashima M, Kaneda H, Yokota D, Ko E, Ito T, Kurita T, Tanaka N, Kimura M, Ito T, Kinoshita Y, Tsuchikane E, Asakura K, Asakura Y, Katoh O, Suzuki T (2012) Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance. Circ Cardiovasc Interv 5(2):193–201CrossRefPubMed Habara M, Nasu K, Terashima M, Kaneda H, Yokota D, Ko E, Ito T, Kurita T, Tanaka N, Kimura M, Ito T, Kinoshita Y, Tsuchikane E, Asakura K, Asakura Y, Katoh O, Suzuki T (2012) Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance. Circ Cardiovasc Interv 5(2):193–201CrossRefPubMed
11.
Zurück zum Zitat Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho J-m, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudeck D, Falk E, Feldman MD, Fitzgerald P, Garcia H, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CCS, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel M-a, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Räber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PWJC, Shimada K, Shinke T, Shite J, Siegel E, Sonada S, Suter M, Takarada S, Tanaka A, Terashima M, Troels T, Uemura S, Ughi GJ, van Beusekom HMM, van der Steen AFW, van Es G-A, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G (2012) Consensus Standards for Acquisition, Measurement, and reporting of Intravascular Optical Coherence Tomography Studies: a Report from the International Working Group for Intravascular Optical Coherence Tomography standardization and validation, vol 59. Journal of the American College of Cardiology, pp 1058–1072. 12 Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho J-m, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudeck D, Falk E, Feldman MD, Fitzgerald P, Garcia H, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CCS, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel M-a, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Räber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PWJC, Shimada K, Shinke T, Shite J, Siegel E, Sonada S, Suter M, Takarada S, Tanaka A, Terashima M, Troels T, Uemura S, Ughi GJ, van Beusekom HMM, van der Steen AFW, van Es G-A, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G (2012) Consensus Standards for Acquisition, Measurement, and reporting of Intravascular Optical Coherence Tomography Studies: a Report from the International Working Group for Intravascular Optical Coherence Tomography standardization and validation, vol 59. Journal of the American College of Cardiology, pp 1058–1072. 12
12.
Zurück zum Zitat Hebsgaard L, Nielsen TM, Tu S, Krusell LR, Maeng M, Veien KT, Raungaard B, Terkelsen CJ, Kaltoft A, Reiber JH, Lassen JF, Christiansen EH, Holm NR (2015) Co-registration of optical coherence tomography and X-ray angiography in percutaneous coronary intervention. The does Optical Coherence Tomography optimize revascularization (DOCTOR) fusion study. Int J Cardiol 182:272–278CrossRefPubMed Hebsgaard L, Nielsen TM, Tu S, Krusell LR, Maeng M, Veien KT, Raungaard B, Terkelsen CJ, Kaltoft A, Reiber JH, Lassen JF, Christiansen EH, Holm NR (2015) Co-registration of optical coherence tomography and X-ray angiography in percutaneous coronary intervention. The does Optical Coherence Tomography optimize revascularization (DOCTOR) fusion study. Int J Cardiol 182:272–278CrossRefPubMed
13.
Zurück zum Zitat Andreasen LN, Holm NR, Balleby IR, Krusell LR, Maeng M, Jakobsen L, Veien KT, Hansen KN, Kristensen SD, Hjort J, Kaltoft A, Dijkstra J, Terkelsen CJ, Lassen JF, Madsen M, Bøtker HE, Jensen LO, Christiansen EH (2018) Randomized comparison of sirolimus eluting, and biolimus eluting bioresorbable polymer stents: the SORT-OUT VII optical coherence tomography study. Eur Heart J - Cardiovasc Imaging 19(3):329–338CrossRefPubMed Andreasen LN, Holm NR, Balleby IR, Krusell LR, Maeng M, Jakobsen L, Veien KT, Hansen KN, Kristensen SD, Hjort J, Kaltoft A, Dijkstra J, Terkelsen CJ, Lassen JF, Madsen M, Bøtker HE, Jensen LO, Christiansen EH (2018) Randomized comparison of sirolimus eluting, and biolimus eluting bioresorbable polymer stents: the SORT-OUT VII optical coherence tomography study. Eur Heart J - Cardiovasc Imaging 19(3):329–338CrossRefPubMed
14.
Zurück zum Zitat Andreasen LN, Balleby IR, Barkholt T, Hebsgaard L, Terkelsen CJ, Holck EN, Jensen LO, Maeng M, Dijkstra J, Antonsen L, Kristensen SD, Tu S, Lassen JF, Christiansen EH, Holm NR (2023) Early healing after treatment of coronary lesions by thin strut everolimus, or thicker strut biolimus eluting bioabsorbable polymer stents: the SORT-OUT VIII OCT study. Catheter Cardiovasc Interv 101(4):787–797CrossRefPubMed Andreasen LN, Balleby IR, Barkholt T, Hebsgaard L, Terkelsen CJ, Holck EN, Jensen LO, Maeng M, Dijkstra J, Antonsen L, Kristensen SD, Tu S, Lassen JF, Christiansen EH, Holm NR (2023) Early healing after treatment of coronary lesions by thin strut everolimus, or thicker strut biolimus eluting bioabsorbable polymer stents: the SORT-OUT VIII OCT study. Catheter Cardiovasc Interv 101(4):787–797CrossRefPubMed
15.
Zurück zum Zitat Jakabcin J, Spacek R, Bystron M, Kvasnak M, Jager J, Veselka J, Kala P, Cervinka P (2010) Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS. Catheter Cardiovasc Interv 75(4):578–583CrossRefPubMed Jakabcin J, Spacek R, Bystron M, Kvasnak M, Jager J, Veselka J, Kala P, Cervinka P (2010) Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS. Catheter Cardiovasc Interv 75(4):578–583CrossRefPubMed
16.
Zurück zum Zitat Chieffo A, Latib A, Caussin C, Presbitero P, Galli S, Menozzi A, Varbella F, Mauri F, Valgimigli M, Arampatzis C, Sabate M, Erglis A, Reimers B, Airoldi F, Laine M, Palop RL, Mikhail G, Maccarthy P, Romeo F, Colombo A (2013) A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial. Am Heart J 165(1):65–72CrossRefPubMed Chieffo A, Latib A, Caussin C, Presbitero P, Galli S, Menozzi A, Varbella F, Mauri F, Valgimigli M, Arampatzis C, Sabate M, Erglis A, Reimers B, Airoldi F, Laine M, Palop RL, Mikhail G, Maccarthy P, Romeo F, Colombo A (2013) A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial. Am Heart J 165(1):65–72CrossRefPubMed
17.
Zurück zum Zitat Kim BK, Shin DH, Hong MK, Park HS, Rha SW, Mintz GS, Kim JS, Kim JS, Lee SJ, Kim HY, Hong BK, Kang WC, Choi JH, Jang Y (2015) Clinical impact of intravascular ultrasound-guided chronic total occlusion intervention with Zotarolimus-Eluting Versus Biolimus-Eluting Stent Implantation: Randomized Study. Circ Cardiovasc Interv 8(7):e002592CrossRefPubMed Kim BK, Shin DH, Hong MK, Park HS, Rha SW, Mintz GS, Kim JS, Kim JS, Lee SJ, Kim HY, Hong BK, Kang WC, Choi JH, Jang Y (2015) Clinical impact of intravascular ultrasound-guided chronic total occlusion intervention with Zotarolimus-Eluting Versus Biolimus-Eluting Stent Implantation: Randomized Study. Circ Cardiovasc Interv 8(7):e002592CrossRefPubMed
18.
Zurück zum Zitat Tian NL, Gami SK, Ye F, Zhang JJ, Liu ZZ, Lin S, Ge Z, Shan SJ, You W, Chen L, Zhang YJ, Mintz G, Chen SL (2015) Angiographic and clinical comparisons of intravascular ultrasound- versus angiography-guided drug-eluting stent implantation for patients with chronic total occlusion lesions: two-year results from a randomised AIR-CTO study. EuroIntervention 10(12):1409–1417CrossRefPubMed Tian NL, Gami SK, Ye F, Zhang JJ, Liu ZZ, Lin S, Ge Z, Shan SJ, You W, Chen L, Zhang YJ, Mintz G, Chen SL (2015) Angiographic and clinical comparisons of intravascular ultrasound- versus angiography-guided drug-eluting stent implantation for patients with chronic total occlusion lesions: two-year results from a randomised AIR-CTO study. EuroIntervention 10(12):1409–1417CrossRefPubMed
19.
Zurück zum Zitat Hong SJ, Kim BK, Shin DH, Nam CM, Kim JS, Ko YG, Choi D, Kang TS, Kang WC, Her AY, Kim YH, Hur SH, Hong BK, Kwon H, Jang Y, Hong MK, Investigators I-X (2015) Effect of Intravascular Ultrasound-Guided vs angiography-guided Everolimus-Eluting Stent Implantation: the IVUS-XPL randomized clinical trial. JAMA 314(20):2155–2163CrossRefPubMed Hong SJ, Kim BK, Shin DH, Nam CM, Kim JS, Ko YG, Choi D, Kang TS, Kang WC, Her AY, Kim YH, Hur SH, Hong BK, Kwon H, Jang Y, Hong MK, Investigators I-X (2015) Effect of Intravascular Ultrasound-Guided vs angiography-guided Everolimus-Eluting Stent Implantation: the IVUS-XPL randomized clinical trial. JAMA 314(20):2155–2163CrossRefPubMed
20.
Zurück zum Zitat Kim JS, Kang TS, Mintz GS, Park BE, Shin DH, Kim BK, Ko YG, Choi D, Jang Y, Hong MK (2013) Randomized comparison of clinical outcomes between intravascular ultrasound and angiography-guided drug-eluting stent implantation for long coronary artery stenoses. JACC Cardiovasc Interv 6(4):369–376CrossRefPubMed Kim JS, Kang TS, Mintz GS, Park BE, Shin DH, Kim BK, Ko YG, Choi D, Jang Y, Hong MK (2013) Randomized comparison of clinical outcomes between intravascular ultrasound and angiography-guided drug-eluting stent implantation for long coronary artery stenoses. JACC Cardiovasc Interv 6(4):369–376CrossRefPubMed
21.
Zurück zum Zitat Tan Q, Wang Q, Liu D, Zhang S, Zhang Y, Li Y (2015) Intravascular ultrasound-guided unprotected left main coronary artery stenting in the elderly. Saudi Med J 36(5):549–553CrossRefPubMedPubMedCentral Tan Q, Wang Q, Liu D, Zhang S, Zhang Y, Li Y (2015) Intravascular ultrasound-guided unprotected left main coronary artery stenting in the elderly. Saudi Med J 36(5):549–553CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Zhang J, Shi R, Pang W, Guo Q, Xu Y, Yang Q, Li Y, Mei J, Jiang T (2016) Application of Intravascular Ultrasound in Stent Implantation for Small Coronary Arteries. Zhang J, Shi R, Pang W, Guo Q, Xu Y, Yang Q, Li Y, Mei J, Jiang T (2016) Application of Intravascular Ultrasound in Stent Implantation for Small Coronary Arteries.
23.
Zurück zum Zitat Zhang J, Gao X, Kan J, Ge Z, Han L, Lu S, Tian N, Lin S, Lu Q, Wu X, Li Q, Liu Z, Chen Y, Qian X, Wang J, Chai D, Chen C, Li X, Gogas BD, Pan T, Shan S, Ye F, Chen SL (2018) Intravascular Ultrasound Versus Angiography-Guided drug-eluting stent implantation: the ULTIMATE Trial. J Am Coll Cardiol 72(24):3126–3137CrossRefPubMed Zhang J, Gao X, Kan J, Ge Z, Han L, Lu S, Tian N, Lin S, Lu Q, Wu X, Li Q, Liu Z, Chen Y, Qian X, Wang J, Chai D, Chen C, Li X, Gogas BD, Pan T, Shan S, Ye F, Chen SL (2018) Intravascular Ultrasound Versus Angiography-Guided drug-eluting stent implantation: the ULTIMATE Trial. J Am Coll Cardiol 72(24):3126–3137CrossRefPubMed
24.
Zurück zum Zitat Otake H, Kubo T, Takahashi H, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, Shite J, Fusazaki T, Kozuma K, Ioji T, Kaneda H, Akasaka T (2018) Optical frequency Domain Imaging Versus Intravascular Ultrasound in Percutaneous Coronary intervention (OPINION trial): results from the OPINION imaging study. JACC Cardiovasc Imaging 11(1):111–123CrossRefPubMed Otake H, Kubo T, Takahashi H, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, Shite J, Fusazaki T, Kozuma K, Ioji T, Kaneda H, Akasaka T (2018) Optical frequency Domain Imaging Versus Intravascular Ultrasound in Percutaneous Coronary intervention (OPINION trial): results from the OPINION imaging study. JACC Cardiovasc Imaging 11(1):111–123CrossRefPubMed
25.
Zurück zum Zitat Antonsen L, Thayssen P, Maehara A, Hansen HS, Junker A, Veien KT, Hansen KN, Hougaard M, Mintz GS, Jensen LO (2015) Optical coherence tomography guided percutaneous coronary intervention with Nobori Stent Implantation in patients with Non-ST-Segment-Elevation myocardial infarction (OCTACS) trial: difference in Strut Coverage and dynamic malapposition patterns at 6 months. Circ Cardiovasc Interv 8(8):e002446CrossRefPubMed Antonsen L, Thayssen P, Maehara A, Hansen HS, Junker A, Veien KT, Hansen KN, Hougaard M, Mintz GS, Jensen LO (2015) Optical coherence tomography guided percutaneous coronary intervention with Nobori Stent Implantation in patients with Non-ST-Segment-Elevation myocardial infarction (OCTACS) trial: difference in Strut Coverage and dynamic malapposition patterns at 6 months. Circ Cardiovasc Interv 8(8):e002446CrossRefPubMed
26.
Zurück zum Zitat Meneveau N, Ecarnot F, Souteyrand G, Motreff P, Caussin C, Van Belle E, Ohlmann P, Morel O, Grentzinger A, Angioi M, Chopard R, Schiele F (2014) Does optical coherence tomography optimize results of stenting? Rationale and study design. Am Heart J, 168(2): p. 175 – 81.e1-2. Meneveau N, Ecarnot F, Souteyrand G, Motreff P, Caussin C, Van Belle E, Ohlmann P, Morel O, Grentzinger A, Angioi M, Chopard R, Schiele F (2014) Does optical coherence tomography optimize results of stenting? Rationale and study design. Am Heart J, 168(2): p. 175 – 81.e1-2.
27.
Zurück zum Zitat Ali Z, Landmesser U, Karimi Galougahi K, Maehara A, Matsumura M, Shlofmitz RA, Guagliumi G, Price MJ, Hill JM, Akasaka T, Prati F, Bezerra HG, Wijns W, Mintz GS, Ben-Yehuda O, McGreevy RJ, Zhang Z, Rapoza RR, West NEJ, Stone GW (2021) Optical coherence tomography-guided coronary stent implantation compared to angiography: a multicentre randomised trial in PCI - design and rationale of ILUMIEN IV: OPTIMAL PCI. EuroIntervention 16(13):1092–1099CrossRefPubMedPubMedCentral Ali Z, Landmesser U, Karimi Galougahi K, Maehara A, Matsumura M, Shlofmitz RA, Guagliumi G, Price MJ, Hill JM, Akasaka T, Prati F, Bezerra HG, Wijns W, Mintz GS, Ben-Yehuda O, McGreevy RJ, Zhang Z, Rapoza RR, West NEJ, Stone GW (2021) Optical coherence tomography-guided coronary stent implantation compared to angiography: a multicentre randomised trial in PCI - design and rationale of ILUMIEN IV: OPTIMAL PCI. EuroIntervention 16(13):1092–1099CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Hong YJ, Jeong MH, Ahn Y, Sim DS, Chung JW, Cho JS, Yoon NS, Yoon HJ, Moon JY, Kim KH, Park HW, Kim JH, Cho JG, Park JC, Kang JC (2008) Age-related differences in intravascular ultrasound findings in 1,009 coronary artery disease patients. Circ J 72(8):1270–1275CrossRefPubMed Hong YJ, Jeong MH, Ahn Y, Sim DS, Chung JW, Cho JS, Yoon NS, Yoon HJ, Moon JY, Kim KH, Park HW, Kim JH, Cho JG, Park JC, Kang JC (2008) Age-related differences in intravascular ultrasound findings in 1,009 coronary artery disease patients. Circ J 72(8):1270–1275CrossRefPubMed
29.
Zurück zum Zitat Sakurai R, Ako J, Morino Y, Sonoda S, Kaneda H, Terashima M, Hassan AH, Leon MB, Moses JW, Popma JJ, Bonneau HN, Yock PG, Fitzgerald PJ, Honda Y (2005) Predictors of edge stenosis following sirolimus-eluting stent deployment (a quantitative intravascular ultrasound analysis from the SIRIUS trial). Am J Cardiol 96(9):1251–1253CrossRefPubMed Sakurai R, Ako J, Morino Y, Sonoda S, Kaneda H, Terashima M, Hassan AH, Leon MB, Moses JW, Popma JJ, Bonneau HN, Yock PG, Fitzgerald PJ, Honda Y (2005) Predictors of edge stenosis following sirolimus-eluting stent deployment (a quantitative intravascular ultrasound analysis from the SIRIUS trial). Am J Cardiol 96(9):1251–1253CrossRefPubMed
30.
Zurück zum Zitat Mintz GS (2014) Clinical utility of intravascular imaging and physiology in coronary artery disease. J Am Coll Cardiol 64(2):207–222CrossRefPubMed Mintz GS (2014) Clinical utility of intravascular imaging and physiology in coronary artery disease. J Am Coll Cardiol 64(2):207–222CrossRefPubMed
31.
Zurück zum Zitat Maehara A, Matsumura M, Ali ZA, Mintz GS, Stone GW (2017) IVUS-Guided Versus OCT-Guided coronary stent implantation: a critical Appraisal. JACC Cardiovasc Imaging 10(12):1487–1503CrossRefPubMed Maehara A, Matsumura M, Ali ZA, Mintz GS, Stone GW (2017) IVUS-Guided Versus OCT-Guided coronary stent implantation: a critical Appraisal. JACC Cardiovasc Imaging 10(12):1487–1503CrossRefPubMed
32.
Zurück zum Zitat Kubo T, Akasaka T, Shite J, Suzuki T, Uemura S, Yu B, Kozuma K, Kitabata H, Shinke T, Habara M, Saito Y, Hou J, Suzuki N, Zhang S (2013) OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging 6(10):1095–1104CrossRefPubMed Kubo T, Akasaka T, Shite J, Suzuki T, Uemura S, Yu B, Kozuma K, Kitabata H, Shinke T, Habara M, Saito Y, Hou J, Suzuki N, Zhang S (2013) OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging 6(10):1095–1104CrossRefPubMed
33.
Zurück zum Zitat Morino Y, Honda Y, Okura H, Oshima A, Hayase M, Bonneau HN, Kuntz RE, Yock PG, Fitzgerald PJ (2001) An optimal diagnostic threshold for minimal stent area to predict target lesion revascularization following stent implantation in native coronary lesions. Am J Cardiol 88(3):301–303CrossRefPubMed Morino Y, Honda Y, Okura H, Oshima A, Hayase M, Bonneau HN, Kuntz RE, Yock PG, Fitzgerald PJ (2001) An optimal diagnostic threshold for minimal stent area to predict target lesion revascularization following stent implantation in native coronary lesions. Am J Cardiol 88(3):301–303CrossRefPubMed
34.
Zurück zum Zitat Hong MK, Mintz GS, Lee CW, Park DW, Choi BR, Park KH, Kim YH, Cheong SS, Song JK, Kim JJ, Park SW, Park SJ (2006) Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J 27(11):1305–1310CrossRefPubMed Hong MK, Mintz GS, Lee CW, Park DW, Choi BR, Park KH, Kim YH, Cheong SS, Song JK, Kim JJ, Park SW, Park SJ (2006) Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J 27(11):1305–1310CrossRefPubMed
35.
Zurück zum Zitat Ladwiniec A, Walsh SJ, Holm NR, Hanratty CG, Mäkikallio T, Kellerth T, Hildick-Smith D, Mogensen LJH, Hartikainen J, Menown IBA, Erglis A, Eriksen E, Spence MS, Thuesen L, Christiansen EH (2020) Intravascular ultrasound to guide left main stem intervention: a NOBLE trial substudy. EuroIntervention 16(3):201–209CrossRefPubMed Ladwiniec A, Walsh SJ, Holm NR, Hanratty CG, Mäkikallio T, Kellerth T, Hildick-Smith D, Mogensen LJH, Hartikainen J, Menown IBA, Erglis A, Eriksen E, Spence MS, Thuesen L, Christiansen EH (2020) Intravascular ultrasound to guide left main stem intervention: a NOBLE trial substudy. EuroIntervention 16(3):201–209CrossRefPubMed
36.
Zurück zum Zitat Oemrawsingh PV, Mintz GS, Schalij MJ, Zwinderman AH, Jukema JW, van der Wall EE (2003) Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP study). Circulation 107(1):62–67CrossRefPubMed Oemrawsingh PV, Mintz GS, Schalij MJ, Zwinderman AH, Jukema JW, van der Wall EE (2003) Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP study). Circulation 107(1):62–67CrossRefPubMed
37.
Zurück zum Zitat Kurokawa M, Uemura S, Watanabe M, Dote Y, Sugawara Y, Goryo Y, Ueda T, Okayama S, Kayashima M, Saito Y (2015) Changes in the reference lumen size of target lesions before and after coronary stent implantation: evaluation with frequency domain optical coherence tomography. Int J Cardiol Heart Vasc 8:122–127PubMedPubMedCentral Kurokawa M, Uemura S, Watanabe M, Dote Y, Sugawara Y, Goryo Y, Ueda T, Okayama S, Kayashima M, Saito Y (2015) Changes in the reference lumen size of target lesions before and after coronary stent implantation: evaluation with frequency domain optical coherence tomography. Int J Cardiol Heart Vasc 8:122–127PubMedPubMedCentral
38.
Zurück zum Zitat Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, Shite J, Ino Y, Kitabata H, Shimokawa T, Akasaka T (2018) Comparison between Optical COherence tomography guidance and angiography guidance in percutaneous coronary intervention (COCOA): study protocol for a randomized controlled trial. J Cardiol 72(2):170–175CrossRefPubMed Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, Shite J, Ino Y, Kitabata H, Shimokawa T, Akasaka T (2018) Comparison between Optical COherence tomography guidance and angiography guidance in percutaneous coronary intervention (COCOA): study protocol for a randomized controlled trial. J Cardiol 72(2):170–175CrossRefPubMed
39.
Zurück zum Zitat Chu M, Cortés C, Liu L, Martínez-Hervás-Alonso M, Reisbeck B, Zhang R, Tu S (2021) and J.L. Gutiérrez-Chico, Comprehensive appraisal of cardiac motion artefact in optical coherence tomography. Cardiol J, Chu M, Cortés C, Liu L, Martínez-Hervás-Alonso M, Reisbeck B, Zhang R, Tu S (2021) and J.L. Gutiérrez-Chico, Comprehensive appraisal of cardiac motion artefact in optical coherence tomography. Cardiol J,
Metadaten
Titel
Comparison of definitions of coronary artery reference sizes and effects on stent selection and evaluation of stent expansion
verfasst von
Lene Nyhus Andreasen
Evald Høj Christiansen
Lone Juul Hune Mogensen
Niels Ramsing Holm
Publikationsdatum
05.07.2023
Verlag
Springer Netherlands
Erschienen in
The International Journal of Cardiovascular Imaging / Ausgabe 9/2023
Print ISSN: 1569-5794
Elektronische ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-023-02890-2

Weitere Artikel der Ausgabe 9/2023

The International Journal of Cardiovascular Imaging 9/2023 Zur Ausgabe

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.